zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Series approach to the Lane-Emden equation and comparison with the homotopy perturbation method. (English) Zbl 1146.34300
Summary: Series solutions of the Lane-Emden equation based on either a Volterra integral equation formulation or the expansion of the dependent variable in the original ordinary differential equation are presented and compared with series solutions obtained by means of integral or differential equations based on a transformation of the dependent variables. It is shown that these four series solutions are the same as those obtained by a direct application of Adomian’s decomposition method to the original differential equation, He’s homotopy perturbation technique, and Wazwaz’s two implementations of the Adomian method based on either the introduction of a new differential operator that overcomes the singularity of the Lane-Emden equation at the origin or the elimination of the first-order derivative term of the original equation. It is also shown that Adomian’s decomposition technique can be interpreted as a perturbative approach which coincides with He’s homotopy perturbation method. An iterative technique based on Picard’s fixed-point theory is also presented and its convergence is analyzed. The convergence of this iterative approach depends on the independent variable and, therefore, this technique is not as convenient as the series solutions derived by the four methods presented in this paper, He’s homotopy perturbation technique, and Adomian’s decomposition method.
34A25Analytical theory of ODE (series, transformations, transforms, operational calculus, etc.)
65L99Numerical methods for ODE