zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence of periodic solutions for a periodic mutualism model on time scales. (English) Zbl 1146.34326

Summary: By using Mawhin’s continuation theorem of coincidence degree theory, sufficient criteria are obtained for the existence of periodic solutions of the mutualism model

x Δ (t)=r 1 (t)K 1 (t)+α 1 (t)exp{y(t-τ 2 (t,y(t)))} 1+exp{y(t-τ 2 (t,y(t)))}-exp{x(t-σ 1 (t,x(t)))},y Δ (t)=r 2 (t)K 2 (t)+α 2 (t)exp{x(t-τ 1 (t,x(t)))} 1+exp{x(t-τ 1 (t,x(t)))}-exp{y(t-σ 2 (t,y(t)))},

where r i , K i , α i C(𝕋, + ), α i >K i , i=1,2,τ i , σ i C(𝕋×,𝕋 + ), i=1,2,r i ,K i ,α i ,τ i ,σ i (i=1,2) are functions of period ω>0.

34K13Periodic solutions of functional differential equations
92D25Population dynamics (general)
39A10Additive difference equations
[1]Agarwal, R. P.: Difference equations and inequalities: theory, method and applications, Monogr. textbooks pure appl. Math. 228 (2000) · Zbl 0952.39001
[2]Agarwal, R. P.; Wong, P. J. Y.: Advanced topics in difference equations, (1997)
[3]Bohner, M.; Peterson, A.: Dynamic equations on time scales, an introduction with applications, (2001)
[4]Bohner, M.; Peterson, A.: Advances in dynamic equations on time scales, (2003)
[5]Boucher, D. H.; James, S.; Keeler, K. H.: The ecology of mutualism, Ann. rev. Syst. 13, 315-347 (1982)
[6]Dean, A. M.: A simple model of mutualism, Amer. nat. 121, 409-417 (1983)
[7]Freedman, H. I.: Deterministic mathematics models in population ecology, (1980)
[8]Gaines, R. E.; Mawhin, J. L.: Coincidence degree and nonlinear differential equations, Lecture notes in math. 568 (1977) · Zbl 0339.47031
[9]Gopalsamy, K.: Stability and oscillations in delay differential equations of population dynamics, (1992) · Zbl 0752.34039
[10]Hilger, S.: Analysis on measure chains — a unified approach to continuous and discrete calculus, Results math. 18, 18-56 (1990) · Zbl 0722.39001
[11]Kaufmann, E. R.; Raffoul, Y. N.: Periodic solutions for a neutral nonlinear dynamical equation on a time scale, J. math. Anal. appl. 319, 315-325 (2006) · Zbl 1096.34057 · doi:10.1016/j.jmaa.2006.01.063
[12]Li, Y. K.: On a periodic mutualism model, Anziam j. 42, 569-580 (2001)
[13]Murry, J. D.: Mathematical biology, (1989)
[14]Pianka, E. R.: Evolutionary ecology, (1974)
[15]Wolin, C. L.; Lawlor, L. R.: Model of facultative mutualism: density effects, Amer. nat. 144, 843-862 (1984)