zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A note on Browder spectrum of operator matrices. (English) Zbl 1146.47004
For A(H), B(H) and C(K,H), define the operator M C acting on HK by M C =AC0B. In this paper the authors, by giving a counterexample, show that some recent results about Browder spectra of upper-triangular operator matrices are not always true and also, under some necessary and sufficient conditions, they determine the set σ b (M C ) over all C(K,H), where σ b (M C ) is the Browder spectrum of M C .
47A10Spectrum and resolvent of linear operators
[1]Zhang, Hai-Yan; Du, Hong-Ke: Browder spectra of upper-triangular operator matrices, J. math. Anal. appl. 323, 700-707 (2006) · Zbl 1109.47007 · doi:10.1016/j.jmaa.2005.10.073
[2]Zhang, H. -Y.; Du, H. -K.: Corrigendum to ”Browder spectra of upper-triangular operator matrices” [J. Math. anal. Appl. 323 (2006) 700 – 707], J. math. Anal. appl. 337, 751-752 (2007)
[3]Djordjevic, D. S.: Perturbations of spectra of operator matrices, J. operator theory 48, 467-486 (2002) · Zbl 1019.47003
[4]Cao, Xiao-Hong; Guo, Mao-Zheng; Meng, Bin: Drazin spectrum and Weyl’s theorem for operator matrices, J. math. Res. exposition 26, 413-422 (2006) · Zbl 1118.47004
[5]Taylor, A. E.; Lay, D. C.: Introduction to functional analysis, (1980) · Zbl 0501.46003
[6]Berkani, M.: Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. amer. Math. soc. 130, 1717-1723 (2002) · Zbl 0996.47015 · doi:10.1090/S0002-9939-01-06291-8