zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Direct method to solve Volterra integral equation of the first kind using operational matrix with block-pulse functions. (English) Zbl 1146.65082
Summary: We propose a simple efficient direct method for solving Volterra integral equation of the first kind. By using block-pulse functions and their operational matrix of integration, first kind integral equation can be reduced to a linear lower triangular system which can be directly solved by forward substitution. Some examples are presented to illustrate efficiency and accuracy of the proposed method.
MSC:
65R20Integral equations (numerical methods)
45D05Volterra integral equations
References:
[1]Akyüz-Daşcioǧlu, A.: A Chebyshev polynomial approach for linear Fredholm-Volterra integro-differential equations in the most general form, Appl. math. Comput. 181, 103-112 (2006) · Zbl 1148.65318 · doi:10.1016/j.amc.2006.01.018
[2]Babolian, E.; Delves, L. M.: An augmented Galerkin method for first kind Fredholm equations, J. inst. Math. appl. 24, 157-174 (1979) · Zbl 0428.65065 · doi:10.1093/imamat/24.2.157
[3]E. Babolian, A. Salimi Shamloo, Numerical solution of Volterra integral and integro-differential equations of convolution type by using operational matrices of piecewise constant orthogonal functions, J. Comput. Appl. Math., in press, doi: 10.1016/j.cam.2007.03.007.
[4]Delves, L. M.; Mohamed, J. L.: Computational methods for integral equations, (1985)
[5]Kythe, P. K.; Puri, P.: Computational methods for linear integral equations, (2002)
[6]Maleknejad, K.; Aghazadeh, N.; Mollapourasl, R.: Numerical solution of Fredholm integral equation of the first kind with collocation method and estimation of error bound, Appl. math. Comput. 179, 352-359 (2006) · Zbl 1108.65128 · doi:10.1016/j.amc.2005.11.159
[7]Maleknejad, K.; Derili, H.: Numerical solution of integral equations by using combination of spline-collocation method and Lagrange interpolation, Appl. math. Comput. 175, 1235-1244 (2006) · Zbl 1093.65125 · doi:10.1016/j.amc.2005.08.034
[8]Rashed, M. T.: An expansion method to treat integral equations, Appl. math. Comput. 135, 65-72 (2003) · Zbl 1023.65135 · doi:10.1016/S0096-3003(01)00311-3
[9]Tikhonov, A. N.; Arsenin, V. Y.: Solutions of ill-posed problems, (1977)