zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multi-objective decision making model under fuzzy random environment and its application to inventory problems. (English) Zbl 1146.90067
Summary: We concentrate on developing a fuzzy random multi-objective model about inventory problems. By giving some definitions and discussing some properties of fuzzy random variables, we design a method of solving solution sets of fuzzy random multi-objective programming problems. These are applied to numerical inventory problems in which all inventory costs, purchasing and selling prices in the objectives and constraints are assumed to be fuzzy random variables in nature, and then, the impreciseness of fuzzy random variables in the above objectives and constraints are transformed into fuzzy variables which are similar trapezoidal fuzzy numbers. The exact parameters of fuzzy membership function and probability density function can be obtained through fuzzy random simulating the past dates. By comparing the results with those from the fuzzy multi-objective models, we believe that the proposed fuzzy random multi-objective model and hybrid intelligent algorithm provide significant solutions to construct other inventory models with fuzzy random variables in real life.
90C29Multi-objective programming; goal programming
90C70Fuzzy programming
90B05Inventory, storage, reservoirs
[1]Ammar, E. E.: On solutions of fuzzy random multiobjective quadratic programming with applications in portfolio problem, Information sciences 178, 468-484 (2008) · Zbl 1149.90188 · doi:10.1016/j.ins.2007.03.029
[2]Ahmad, I.: Symmetric duality for multiobjective fractional variational problems with generalized invexity, Information sciences 176, 2192-2207 (2006) · Zbl 1113.90140 · doi:10.1016/j.ins.2005.04.002
[3]Ahmad, I.; Husain, Z.: Second order (F α,ρ,d)-convexity and duality in multiobjective programming, Information sciences 176, 3094-3103 (2006) · Zbl 1098.90063 · doi:10.1016/j.ins.2005.08.003
[4]Bellman, R. E.; Zadeh, L. A.: Decision-making in a fuzzy environment, Management science 17, No. 4, 141-164 (1970) · Zbl 0224.90032
[5]Chen, S. H.; Wang, C.; Arthur, R.: Backorder fuzzy inventory model under function principle, Information sciences 95, 71-79 (1996)
[6]Chih, H.: Optimization of fuzzy production inventory models, Information sciences 146, 29-40 (2002) · Zbl 1028.90001 · doi:10.1016/S0020-0255(02)00212-8
[7]Dubois, D.; Prade, H.: Possibility theory: an approach to computerized processing of uncertainty, (1988) · Zbl 0703.68004
[8]Dubois, D.; Prade, H.: The three semantic of fuzzy sets, Fuzzy sets and systems 90, 141-150 (1997) · Zbl 0919.04006 · doi:10.1016/S0165-0114(97)00080-8
[9]Dutta, A. P.; Chakraborty, D.: A sing-period inventory model with fuzzy random variable demand, Mathematical and computer modelling 41, 915-922 (2005) · Zbl 1121.90302 · doi:10.1016/j.mcm.2004.08.007
[10]Ekel, P. Y.; Fernando, H.; Neto, S.: Algorithms of discrete optimization and their application to problems with fuzzy coefficients, Information sciences 176, 2846-2868 (2006) · Zbl 1141.90588 · doi:10.1016/j.ins.2005.06.001
[11]Feng, D.; Nguyen, H. T.: Choquet weak convergence of capacity functionals of random sets, Information sciences 177, 3239-3250 (2007) · Zbl 1126.60013 · doi:10.1016/j.ins.2006.11.011
[12]Gen, M.; Cheng, R.: Genetic algorithms and engineering design, (1997)
[13]Gen, M.; Cheng, R.: Genetic algorithms and engineering optimization, (2000)
[14]Huang, X.: A new perspective for optimal portfolio selection with random fuzzy returns, Information sciences 177, 5404-5414 (2007)
[15]Ishii, H.; Konno, T.: A stochastic inventory problem with fuzzy shortage cost, European journal operational research 106, 90-94 (1998)
[16]Kao, C.; Hsu, W. K.: A sing-period inventory model with fuzzy demand, Computers and mathematics with applications 43, 841-848 (2002) · Zbl 0994.90002 · doi:10.1016/S0898-1221(01)00325-X
[17]Katagiri, H.; Sakawa, M.; Kato, K.; Nishizaki, I.: Interactive multiobjective fuzzy random linear programming maximization of possibility and probability, European journal of operational research 188, 530-539 (2008) · Zbl 1149.90400 · doi:10.1016/j.ejor.2007.02.050
[18]Katagiri, H.; Sakawa, M.; Kato, K.; Nishizaki, I.: A fuzzy random multiobjective 0 – 1 programming based on the expectation optimization model using possibility and necessary measures, Mathematical and computer modelling, 411-421 (2004) · Zbl 1112.90107 · doi:10.1016/j.mcm.2003.08.007
[19]Kwakernaak, H.: Fuzzy random variables-I, definitions and theorems, Information sciences, 1-29 (1978) · Zbl 0438.60004 · doi:10.1016/0020-0255(78)90019-1
[20]Kwakernaak, H.: Fuzzy random variables-II, algorithms and examples for the discrete case, Information sciences, 253-278 (1979) · Zbl 0438.60005 · doi:10.1016/0020-0255(79)90020-3
[21]Lewis, C. D.: Scientific inventory control, (1970)
[22]Li, S. L.; Nair, K. P. K.: Fuzzy models for single-period inventory problem, Fuzzy sets and systems 132, 273-289 (2002) · Zbl 1013.90003 · doi:10.1016/S0165-0114(02)00104-5
[23]Li, J.; Xu, J. P.; Gen, M.: A class of multiobjective linear programming model with fuzzy random coefficients, Mathematical and computer modelling 44, 1097-1113 (2006) · Zbl 1165.90701 · doi:10.1016/j.mcm.2006.03.013
[24]Liu, Y. K.; Liu, B.: Fuzzy random variables: a scalar expected value operator, Fuzzy optimization and decision making, 143-160 (2003)
[25]Liu, Y. K.; Liu, B.: A class of fuzzy random optimization: expected value models, Information sciences 115, 89-102 (2003) · Zbl 1039.60002 · doi:10.1016/S0020-0255(03)00079-3
[26]Liu, Y. K.; Liu, B.: On minimum-risk problems in fuzzy random decision systems, Computers and operations research, 257-283 (2005) · Zbl 1068.90110 · doi:10.1016/S0305-0548(03)00235-1
[27]Luhandjula, M. K.: Optimisation under hybrid uncertainty, Fuzzy sets and systems, 187-203 (2004) · Zbl 1061.90123 · doi:10.1016/j.fss.2004.01.002
[28]Mondal, S.; Maiti, M.: Multi-item fuzzy EOQ models using genetic algorithm, Computers and industrial engineering 44, 105-117 (2003)
[29]Naddor, E.: Inventory systems, (1966)
[30]Nahmias, S.: Fuzzy variables, Fuzzy sets and systems 1, 97-110 (1978) · Zbl 0383.03038 · doi:10.1016/0165-0114(78)90011-8
[31]Nguyen, V. H.: Fuzzy stochastic goal programming problems, European journal of operational research 176, 77-86 (2007) · Zbl 1137.90767 · doi:10.1016/j.ejor.2005.09.023
[32]Nguyen, V. H.: Solving linear programming problems under fuzziness and randomness environment using attainment values, Information sciences 177, 2971-2984 (2007) · Zbl 1178.90363 · doi:10.1016/j.ins.2007.01.032
[33]Ripon, K. S. N.; Kwong, S.; Man, K. F.: A real-coding jumping gene genetic algorithm (RJGGA) for multiobjective optimization, Information sciences 177, 632-654 (2007) · Zbl 1142.68524 · doi:10.1016/j.ins.2006.07.019
[34]Roy, T. K.; Maiti, M.: Multi-objective inventory models of deterioration items with some constraints in a fuzzy environment, Computers and operations research, 1085-1095 (1998) · Zbl 1042.90511 · doi:10.1016/S0305-0548(98)00029-X
[35]Sakawa, M.; Yano, H.: An interactive fuzzy satisfying method for generalized multiobjective linear programming problems with fuzzy parameters, Fuzzy sets and systems 35, 125-142 (1990) · Zbl 0715.90098 · doi:10.1016/0165-0114(90)90188-C
[36]Silver, E. A.; Peterson, R.: Decision systems for inventory management and production planning, (1985)
[37]Tsourveloudis, N. C.; Dretoulakis, E.; Ioannidis, S.: Fuzzy work-in-process inventory control of unreliable manufacturing systems, Information sciences 127, 69-83 (2000)
[38]Toroslu, I. H.; Arslanoglu, Y.: Genetic algorithm for the personnel assignment problem with multiple objectives, Information sciences 177, 787-803 (2007)
[39]Xu, J. P.; Li, J.: Multiple objective decision making theory and methods, Multiple objective decision making theory and methods 3 (2005)
[40]Xu, Z. S.; Chen, J.: An interactive method for fuzzy multiple attribute group decision making, Information sciences 177, 248-263 (2007) · Zbl 1142.68556 · doi:10.1016/j.ins.2006.03.001
[41]Yao, J.; Lee, H.: Fuzzy inventory with backorder for fuzzy order quantity, Information sciences 93, 283-319 (1996) · Zbl 0884.90077 · doi:10.1016/0020-0255(96)00074-6
[42]Zadeh, L. A.: Fuzzy sets, Information and control 8, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[43]Zadeh, L. A.: Fuzzy sets as a basis for a theory of possibility, Fuzzy sets and systems 1, 3-28 (1978) · Zbl 0377.04002 · doi:10.1016/0165-0114(78)90029-5
[44]Zimmermann, H. J.: Fuzzy linear programming with several objective functions, Fuzzy sets and system 1, 46-55 (1978) · Zbl 0364.90065 · doi:10.1016/0165-0114(78)90031-3