zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A novel image encryption scheme based on spatial chaos map. (English) Zbl 1146.94303
Summary: In recent years, the chaos-based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques, but the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. In this paper, spatial chaos system are used for high degree security image encryption while its speed is acceptable. The proposed algorithm is described in detail. The basic idea is to encrypt the image in space with spatial chaos map pixel by pixel, and then the pixels are confused in multiple directions of space. Using this method one cycle, the image becomes indistinguishable in space due to inherent properties of spatial chaotic systems. Several experimental results, key sensitivity tests, key space analysis, and statistical analysis show that the approach for image cryptosystems provides an efficient and secure way for real time image encryption and transmission from the cryptographic viewpoint.
MSC:
94A60Cryptography
37D45Strange attractors, chaotic dynamics
References:
[1]Zhang, L. H.; Liao, X. F.; Wang, X. B.: An image encryption approach based on chaotic maps, Chaos, solitons & fractals 24, 759-765 (2005) · Zbl 1083.94011 · doi:10.1016/j.chaos.2004.09.035
[2]Kocarev, L.: Chaos-based cryptography: a brief overview, IEEE circ syst mag 1, No. 3, 6-21 (2001)
[3]Wheeler, D. D.: Problems with chaotic cryptosystems, Cryptologia 13, No. 3, 243-250 (1989)
[4]Li, S. J.; Mou, X.; Cai, Y.; Ji, Z.; Zhang, J.: On the security of a chaotic encryption scheme: problems with computerized chaos in finite computing precision, Comput phys commun 153, No. 1, 52-58 (2003) · Zbl 1196.94057 · doi:10.1016/S0010-4655(02)00875-5
[5]Yang, T.; Yang, L. B.; Yang, C. M.: Cryptanalyzing chaotic secure communications using return maps, Phys lett A 245, 495-510 (1998)
[6]Short, K. M.: Signal extraction from chaotic communication, Int J bifurcat chaos 7, No. 7, 1579-1597 (1997) · Zbl 0903.94003 · doi:10.1142/S0218127497001230
[7]Baptista, M. S.: Cryptography with chaos, Phys lett A 240, 50-54 (1999) · Zbl 0936.94013 · doi:10.1016/S0375-9601(98)00086-3
[8]Pareek, N. K.; Patidar, V.; Sud, K. K.: Cryptography using multiple one-dimensional chaotic maps, Commun nonlinear sci number simul 10, No. 7, 715-723 (2005) · Zbl 1075.68027 · doi:10.1016/j.cnsns.2004.03.006
[9]Xiang, T.; Liao, X.; Tang, G.; Chen, Y.; Wong, K. W.: A novel block cryptosystem based on iterating a chaotic map, Phys lett A 349, 109-115 (2006) · Zbl 1195.81041 · doi:10.1016/j.physleta.2005.02.083
[10]Sun, F. Y.; Liu, S. T.; Lü, Z. W.: Image encryption using high-dimension chaotic system, Chin phys 16, No. 12, 3616-3623 (2007)
[11]Garcia, P.; Parravano, A.; Cosenza, M. G.; Jimenez, J.; Marcano, A.: Coupled map networks as communication schemes, Phys rev E 65, 045201 (2002)
[12]Lu, H. P.; Wang, S. H.; Li, X. W.; Tang, G. N.; Kuang, J. Y.; Ye, W. P.: A new spatiotemporally chaotic cryptosystem and its security and performance analyses, Chaos 14, No. 3, 617-629 (2004) · Zbl 1080.94011 · doi:10.1063/1.1772731
[13]Li, P.; Li, Z.; Halang, W. A.; Chen, G. R.: A multiple pseudorandom-bit generator based on a spatiotemporal chaotic map, Phys lett A 349, 467-473 (2006)
[14]Li, P.; Li, Z.; Halang, W. A.; Chen, G. R.: A stream cipher based on a spatiotemporal chaotic system, Chaos, solitons & fractals 32, 1867-1876 (2007) · Zbl 1131.94014 · doi:10.1016/j.chaos.2005.12.021
[15]Grebogi, C.; Ott, E.; Yorke, A.: Roundoff-induced periodicity and the correlation dimension of chaotic attractors, Phys rev A 38, 3688-3692 (1988)
[16]Bastolla, U.; Parisi, G.: Attraction basins in discretized maps, J phys A 30, 3757-3769 (1997) · Zbl 0932.37035 · doi:10.1088/0305-4470/30/11/009
[17]Wang, S. H.; Liu, W. R.; Lu, H. P.; Kuang, J. Y.; Hu, G.: Periodicity of chaotic trajectories of single and coupled maps in realizations of finite computer precisions, Int J mod phys B 18, No. 17-19, 2617-2622 (2004)
[18]Tang, G.; Wang, S.; Lu, H.; Hu, G.: Chaos-based cryptography incorporated with S-box algebraic operation, Phys lett A 318, 388-398 (2003) · Zbl 1031.94015 · doi:10.1016/j.physleta.2003.09.042
[19]Kaneko, K.; Tsuda, I.: Complex systems: chaos and beyond: a constructive approach with applications in life sciences, (2001)
[20]Wang, S. H.; Kuang, J. Y.; Li, J.; Luo, Y.; Lu, H. P.; Hu, G.: Chaos-based secure communication in a large community, Phys rev E 66, 065202(R) (2002)
[21]Kaneko, K.; Tsuda, I.: Complex systems: chaos and beyond, (1996)
[22]Yang, W. M.: On the largest exponent for coupled surjective map lattice with weak diffusive coupling, Chaos, solitons & fractal 1, 389-396 (1991) · Zbl 0741.70016 · doi:10.1016/0960-0779(91)90030-D
[23]Hao, B. L.: Elementary symbolic dynamics and chaos in dissipative systems, (1989)
[24]Chen, G.; Liu, S. T.: On spatial periodic orbits and spatial chaos, Int J bifurcat chaos appl sci eng 15, No. 4, 867-876 (2003)
[25]Liu, S. T.; Chen, G.: On spatial Lyapunov exponents and spatial chaos, Int J bifurcat chaos appl sci eng 15, No. 5, 1163-1181 (2003) · Zbl 1056.37036 · doi:10.1142/S0218127403007126
[26]Chen, G.; Liu, S. T.: On generalized synchronization of spatial chaos, Chaos, solitons & fractals 15, No. 2, 311-318 (2003) · Zbl 1043.37024 · doi:10.1016/S0960-0779(02)00101-7
[27]Liu, S. T.; Chen, G.: Nonlinear feedback-controlled generalized synchronization of spatial chaos, Chaos, solitons & fractals 22, No. 4, 35-46 (2004) · Zbl 1060.93531 · doi:10.1016/j.chaos.2003.12.024