zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hyperbolicity and invariant manifolds for planar nonautonomous systems on finite time intervals. (English) Zbl 1147.37314
Summary: The method of invariant manifolds was originally developed for hyperbolic rest points of autonomous equations. It was then extended from fixed points to arbitrary solutions and from autonomous equations to nonautonomous dynamical systems by either the Lyapunov-Perron approach or Hadamard’s graph transformation. Ee go one step further and study meaningful notions of hyperbolicity and stable and unstable manifolds for equations which are defined or known only for a finite time, together with matching notions of attraction and repulsion. As a consequence, hyperbolicity and invariant manifolds will describe the dynamics on the finite time interval. We prove an analog of the Theorem of Linearized Asymptotic Stability on finite time intervals, generalize the Okubo-Weiss criterion from fluid dynamics and prove a theorem on the location of periodic orbits. Several examples are treated, including a double gyre flow and symmetric vortex merger.
37D10Invariant manifold theory
37C60Nonautonomous smooth dynamical systems
37D05Hyperbolic orbits and sets
34C45Invariant manifolds (ODE)
34D20Stability of ODE