zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Domain reconstruction using photothermal techniques. (English) Zbl 1147.65072

Summary: A numerical method to detect objects buried in a medium by surface thermal measurements is presented. We propose a new approach combining the use of topological derivatives and Laplace transforms. The original optimization problem with time-dependent constraints is replaced by an equivalent problem with stationary constraints by means of Laplace transforms.

The first step in the reconstruction scheme consists in discretizing the inversion formula to produce an approximate optimization problem with a finite set of constraints. Then, an explicit expression for the topological derivative of the approximate shape functional is given. This formula is evaluated at low cost using explicit expressions of the forward and adjoint fields involved.

We apply this technique to a simple shape reconstruction problem set in a half space. Good approximations of the number, location and size of the obstacles are obtained. The description of their shapes can be improved by more expensive hybrid methods combining time averaging with topological derivative based iterative schemes.

65M32Inverse problems (IVP of PDE, numerical methods)
35K05Heat equation
35R30Inverse problems for PDE
44A10Laplace transform
65K10Optimization techniques (numerical methods)
49Q10Optimization of shapes other than minimal surfaces
35A22Transform methods (PDE)
[1]Almond, D. P.; Patel, P. M.: Photothermal science and techniques, (1996)
[2]Banks, H. T.; Kojima, F.: Boundary shape identification problems in two-dimensional domains related to thermal testing of materials, Quart. appl. Math. 47, 273-293 (1989) · Zbl 0687.65109
[3]Banks, H. T.; Kojima, F.; Winfree, W. P.: Boundary estimation problems arising in thermal tomography, Inverse probl. 6, 897-921 (1990) · Zbl 0749.65080 · doi:10.1088/0266-5611/6/6/003
[4]Beylkin, G.: Imaging of discontinuities in the inverse scattering problem by inversion of causal generalized Radon transform, J. math. Phys. 26, 99-108 (1985)
[5]Burger, M.; Hackl, B.; Ring, W.: Incorporating topological derivatives into level set methods, J. comput. Phys. 194, 344-362 (2004) · Zbl 1044.65053 · doi:10.1016/j.jcp.2003.09.033
[6]Cakoni, F.; Colton, D.; Monk, P.: The determination of the surface conductivity of a partially coated dielectric, SIAM J. Appl. math. 65, 767-789 (2005) · Zbl 1083.78007 · doi:10.1137/040604224
[7]A. Carpio, M.-L. Rapún, Solving inhomogeneous inverse problems by topological derivative methods, Inverse Probl., On line at stacks.iop.org/IP/24/045014, doi:10.1088/0266-5611/24/4/045014. · Zbl 1153.35401 · doi:10.1088/0266-5611/24/4/045014
[8]Carpio, A.; Rapún, M. -L.: Topological derivatives for shape reconstruction, Lecture notes in mathematics, 85-134 (2008)
[9]Cheney, M.; Isaacson, D.; Newell, J. C.: Electrical impedance tomography, SIAM rev. 41, 85-101 (1999) · Zbl 0927.35130 · doi:10.1137/S0036144598333613
[10]Costabel, M.; Stephan, E.: A direct boundary integral equation method for transmission problems, J. math. Anal. appl. 106, 367-413 (1985) · Zbl 0597.35021 · doi:10.1016/0022-247X(85)90118-0
[11]Dorn, O.; Lesselier, D.: Level set methods for inverse scattering, Inverse probl. 22, R67-R131 (2006) · Zbl 1191.35272 · doi:10.1088/0266-5611/22/4/R01
[12]Elden, L.; Berntsson, F.; Reginska, T.: Wavelet and Fourier methods for solving the sideways heat equation, SIAM J. Sci. comput. 21, 2187-2205 (2000) · Zbl 0959.65107 · doi:10.1137/S1064827597331394
[13]Feijoo, G. R.: A new method in inverse scattering based on the topological derivative, Inverse probl. 20, 1819-1840 (2004) · Zbl 1077.78010 · doi:10.1088/0266-5611/20/6/008
[14]Garrido, F.; Salazar, A.: Thermal wave scattering from spheres, J. appl. Phys. 95, 140-149 (2004)
[15]Guzina, B. B.; Bonnet, M.: Topological derivative for the inverse scattering of elastic waves, Quart. J. Mech. appl. Math. 57, 161-179 (2004) · Zbl 1112.74035 · doi:10.1093/qjmam/57.2.161
[16]Guzina, B. B.; Bonnet, M.: Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics, Inverse probl. 22, 1761-1785 (2006) · Zbl 1105.76055 · doi:10.1088/0266-5611/22/5/014
[17]Heath, D. M.; Welch, C. S.; Winfree, W. P.: Quantitative thermal diffusivity measurements of composites, Review of progress in quantitative non-destructive evaluation 5B (1986)
[18]Hohage, T.; Rapún, M. -L.; Sayas, F. -J.: Detecting corrosion using thermal measurements, Inverse probl. 23, 53-72 (2007) · Zbl 1111.35113 · doi:10.1088/0266-5611/23/1/003
[19]Hohage, T.; Sayas, F. -J.: Numerical approximation of a heat diffusion problem by boundary element methods using the Laplace transform, Numer. math. 102, 67-92 (2005) · Zbl 1082.65105 · doi:10.1007/s00211-005-0645-y
[20]Isakov, V.: Inverse problems for partial differential equations, (1998) · Zbl 0906.35111 · doi:emis:journals/DMJDMV/xvol-icm/10/10.html
[21]A. Laliena, F.-J. Sayas, LDBEM in diffusion problems, in: Proceedings of XIX CEDYA/IX CMA, 2005 (electronic version).
[22]López-Fernández, M.; Palencia, C.: On the numerical inversion of the Laplace transform of certain holomorphic mappings, Appl. numer. Math. 51, 289-303 (2004) · Zbl 1059.65120 · doi:10.1016/j.apnum.2004.06.015
[23]Mandelis, A.: Diffusion-wave fields. Mathematical methods and Green functions, (2001)
[24]Mandelis, A.: Diffusion waves and their uses, Phys. today 53, 29-34 (2000)
[25]Nicolaides, L.; Mandelis, A.: Image-enhanced thermal-wave slice diffraction tomography with numerically simulated reconstructions, Inverse probl. 13, 1393-1412 (1997) · Zbl 0882.35137 · doi:10.1088/0266-5611/13/5/018
[26]Ocáriz, A.; Sánchez-Lavega, A.; Salazar, A.: Photothermal study of subsurface cylindrical structures: II. Experimental results, J. appl. Phys. 81, 7561-7566 (1997)
[27]O’leary, M. A.; Boas, D. A.; Chance, B.; Yodh, A. G.: Refraction of diffusive photon density waves, Phys. rev. Lett. 69, 2658-2662 (1992)
[28]Rapún, M. -L.; Sayas, F. -J.: Boundary integral approximation of a heat diffusion problem in time-harmonic regime, Numer. algor. 41, 127-160 (2006) · Zbl 1096.65122 · doi:10.1007/s11075-005-9002-6
[29]Rapún, M. -L.; Sayas, F. -J.: Boundary element simulation of thermal waves, Arch. comput. Methods eng. 14, 3-46 (2007) · Zbl 1177.80096 · doi:10.1007/s11831-006-9000-4
[30]Salazar, A.; Sánchez-Lavega, A.; Celorrio, R.: Scattering of cylindrical thermal waves in fiber composites: in-plane thermal diffusivity, J. appl. Phys. 93, 4536-4542 (2003)
[31]Talbot, A.: The accurate numerical inversion of Laplace transforms, J. inst. Math. appl. 23, 97-120 (1979) · Zbl 0406.65054 · doi:10.1093/imamat/23.1.97
[32]Terrón, J. M.; Salazar, A.; Sánchez-Lavega, A.: General solution for the thermal wave scattering in fiber composites, J. appl. Phys. 91, 1087-1098 (2002)