zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamics and flatness-based control of a kinematically undetermined cable suspension manipulator. (English) Zbl 1147.70306
Summary: A kinematically undetermined cable suspension manipulator moves a payload platform in space by several cables with computer-controlled winches, whereby the position of the payload platform is not determined by the lengths of the cables. Trajectory tracking control of the payload platform is achieved by means of the concept of flat systems. A flat system has the property that the state variables and the control inputs can be algebraically expressed in terms of the so-called flat output and a finite number of time derivatives of the flat output. Its application to kinematically undetermined manipulators represents a generalization of computed-torque control. The control forces are algebraically calculated from the desired trajectories of the payload platform and their time derivatives up to the fourth order leading to a feedforward control strategy. Asymptotically stable tracking behavior is achieved by exact linearization of the nonlinear dynamics by means of a so-called quasi-static state feedback. The procedure is described for the trajectory tracking control of the prototype three-cable suspension manipulator CABLEV.
MSC:
70E60Robot dynamics and control (dynamics of a rigid body and of multibody systems)
70B15Mechanisms, robots (kinematics)
70Q05Control of mechanical systems (general mechanics)
93C85Automated control systems (robots, etc.)
References:
[1]Alp, A.B., Agrawal, S.K.: Cable Suspended Robots: Feedback Controllers with Positive Inputs. In: Proc. of the American Control Conference. Anchorage, Alaska, USA (2002)
[2]Arai, T., Osumi, B.: Three Wire Suspension Robot. Industrial Robot 19, 17–22 (1992)
[3]Boustany, F., d’Andréa-Novel, B.: Adaptive Control of an Overhead Crane Using Dynamic Feedback Linearization and Estimation Design. In: Proc. 1992 IEEE Int. Conf. Rob. Autom., Nice, 1963–1968 (1992)
[4]Dagalakis, N., Albus, J., Wang, B.-L., Unger, J., Lee, J.: Stiffness Study of a Parallel Link Robot Crane for Shipbuilding Applications. ASME Journal for Offshore Mechanics and Arctic Engineering 111, 183–193 (1991) · doi:10.1115/1.3257146
[5]Delaleau, E., Rudolph, J.: Control of flat systems by quasi-static feedback of generalized states. International Journal of Control 71, 745–765 (1998) · Zbl 0962.93019 · doi:10.1080/002071798221551
[6]Fliess, M., Lévine, J., Martin, P., Rouchon, P.: Differentially Flat Nonlinear Systems. In: Fliess, M. (ed.), Nonlinear Control System Design, pp. 408–412, Pergamon Press, (1992)
[7]Fliess, M., Lévine, J., Martin, P., Rouchon, P.: Flatness and Defect of Nonlinear Systems: Introductory Theory and Examples. International Journal of Control 61, 1327–1361 (1995) · Zbl 0838.93022 · doi:10.1080/00207179508921959
[8]Heyden, T.: Bahnregelung eines seilgeführten Handhabungssystems mit kinematisch unbestimmter Lastführung. Fortschritt-Bericht VDI, Reihe 8, Nr. 1100, Düsseldorf: VDI-Verlag (2006)
[9]Heyden, T., Maier, T., Woernle, C.: Trajectory Tracking Control for a Cable Suspension Manipulator. In: Lenarčič, J., Husty, M. (eds.), Advances in Robot Kinematics: Analysis and Control, Caldes de Malavella, Spain, (2002)
[10]Hiller, M., Fang, S., Mielczarek, S., Verhoeven, R., Franitza, D.: Design, Analysis and Realization of Tendon-Based Parallel Manipulators. Mechanism and Machine Theory 40, 429–445 (2005) · Zbl 1116.70312 · doi:10.1016/j.mechmachtheory.2004.08.002
[11]Isidori, A.: Nonlinear control systems. Berlin: Springer Verlag, (1995)
[12]Lee, H.-H.: Modeling and Control of a Three-Dimensional Overhead Crane. ASME Journal of Dynamic Systems, Measurement and Control 120, 471–476 (1998) · doi:10.1115/1.2801488
[13]Maier, T., Woernle, C.: Inverse Kinematics for an Underconstrained Cable Suspension Manipulator. In: Lenarčič, J., Husty, M. (eds.), Advances in Robot Kinematics: Analysis and Control, pp. 97–104, Kluwer Academic Publishers, Dordrecht, (1998)
[14]Maier, T., Woernle, C.: Dynamics and Control of a Cable Suspension Manipulator. In: The 9th German-Japanese Seminar for Nonlinear Problems in Dynamical Systems –Theory and Applications, Straelen, Germany (2000)
[15]Maier, T., Woernle, C.: Flachheitsbasierte Bahnsteuerung von seilgeführten Handhabungssystemen. Automatisierungstechnik 51, 265–273 (2003) · doi:10.1524/auto.51.6.265.22449
[16]Ming, A., Higuchi, T.: Study on Multiple Degree-of-Freedom Positioning Mechanisms using Wires (Parts 1 and 2). Int. Journal of the Japanese Society for Precision Engineering 28, 131–138 and 235–242 (1994)
[17]Moustafa, K., Ebeid, A.: Nonlinear Modeling and Control of Overhead Crane Load Sway. ASME Journal of Dynamic Systems, Measurement and Control 110, 266–271 (1988) · doi:10.1115/1.3152680
[18]Rothfuss, R., Rudolph, J., Zeitz, M.: Flatness Based Control of a Nonlinear Chemical Reactor Model. Automatica 32, 1433–1439 (1996) · Zbl 0865.93046 · doi:10.1016/0005-1098(96)00090-8
[19]Sawodny, O., Aschemann, H., Lahres, R., Hofer, R.: Tracking Control for Automated Bridge Cranes. In: Tzafestas, S. (ed.), Advances in Manufacturing, pp. 310–320. Berlin: Springer Verlag, (1999)
[20]Tadokoro, S., Maeda, K., Takamori, T., Hiller, M., Verhoeven, R.: Design of Parallel Robot Driven by Redundant Cables: WARP Manipulator. In: Kecskeméthy, A., Schneider, M., Woernle, C. (eds.), Advances in Multibody Systems, pp. 359–369, Graz University of Technology, (1999)
[21]Verhoeven, R., Hiller, M., Tadokoro, S.: Workspace, Stiffness, Singularities and Classification of Tendon-Driven Stewart Platforms. In: Lenarčič, J., Husty, M. (eds.), Advances in Robot Kinematics: Analysis and Control, pp. 105–114. Kluwer Academic Publishers, (1998)
[22]Yamamoto, M. Yanai, N., Mohri, A.: Trajectory Control of Incompletely Restrained Parellel-Wire-Suspended Mechanism Based on Inverse Dynamics. IEEE Transactions on Robotics 20, 840–850 (2004) · doi:10.1109/TRO.2004.829501
[23]Yang, L.F., Mikulas, M.M.: Mechanism Synthesis and Two-Dimensional Control Designs of an Active Three-Cable Crane. Journal of Spacecraft and Rockets 31, 135–144 (1994) · doi:10.2514/3.26413