zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The low Mach number limit for the full Navier-Stokes-Fourier system. (English) Zbl 1147.76049
Summary: We study the low Mach number asymptotic limit for solutions to the full Navier-Stokes–Stokes-Fourier system, supplemented with ill-prepared data and considered on an arbitrary time interval. Convergence towards incompressible Navier-Stokes equations is shown.
76N10Compressible fluids, general
35Q30Stokes and Navier-Stokes equations
[1]Alazard, T.: Low mach number limit of the full Navier-Stokes equations. To appear in Arch. Ration. Mech. Anal. (2005)
[2]Boccardo L., Dall’Aglio A., Gallouet T., Orsina L. (1997). Nonlinear parabolic equations with measure data. J. Funct. Anal. 147, 237–258 · Zbl 0887.35082 · doi:10.1006/jfan.1996.3040
[3]Bresch D., Desjardins B., Grenier E., Lin C.-K. (2002). Low Mach number limit of viscous polytropic flows: Formal asymptotics in the periodic case. Stud. Appl. Math. 109, 125–149 · Zbl 1114.76347 · doi:10.1111/1467-9590.01440
[4]Buet, C., Després, B.: Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics. Preprint 2003
[5]Danchin R. (2002). Zero Mach number limit for compressible flows with periodic boundary conditions. Amer. J. Math. 124, 1153–1219 · Zbl 1048.35075 · doi:10.1353/ajm.2002.0036
[6]Desjardins B., Grenier E., Lions P.-L., Masmoudi N. (1999). Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78, 461–471 · Zbl 0992.35067 · doi:10.1016/S0021-7824(99)00032-X
[7]DiPerna R.J., Lions P.-L. (1989). Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 · Zbl 0696.34049 · doi:10.1007/BF01393835
[8]Ducomet B., Feireisl E. (2004). On the dynamics of gaseous stars. Arch. Ration. Mech. Anal. 174, 221–266 · Zbl 1085.76061 · doi:10.1007/s00205-004-0326-5
[9]Ebin D.B. (1977). The motion of slightly compressible fluids viewed as a motion with strong constraining force. Ann. of Math. 105(2): 141–200 · Zbl 0373.76007 · doi:10.2307/1971029
[10]Ebin, D.B.: Viscous fluids in a domain with frictionless boundary. Global Analysis - Analysis on Manifolds. (Ed. H. Kurke, J. Mecke, H. Triebel, R. Thiele) Teubner-Texte zur Mathematik 57, Teubner, Leipzig, 93–110 (1983)
[11]Feireisl E. (2003). Dynamics of viscous compressible fluids. Oxford University Press, Oxford
[12]Feireisl, E.: Mathematical theory of compressible, viscous, and heat conducting fluids. To appear in Comput. Appl. Math. (2007)
[13]Feireisl E., Novotný (2005). On a simple model of reacting compressible flows arising in astrophysics. Proc. Roy. Sect. Soc. Edinburgh Sect. A 135, 1169–1194 · Zbl 1130.35108 · doi:10.1017/S0308210500004327
[14]Gallavotti G. (1999). Statistical mechanics: A short treatise. Springer-Verlag, Heidelberg
[15]Gallavotti G. (2002). Foundations of fluid dynamics. Springer-Verlag, New York
[16]Hagstrom T., Lorenz J. (2002). On the stability of approximate solutions of hyperbolic-parabolic systems and all-time existence of smooth, slightly compressible flows. Indiana Univ. Math. J. 51: 1339–1387 · Zbl 1039.35085 · doi:10.1512/iumj.2002.51.2061
[17]Hoff D. (1998). The zero Mach number limit of compressible flows. Comm. Math. Phys. 192, 543–554 · Zbl 0907.35098 · doi:10.1007/s002200050308
[18]Hoff D. (2002). Dynamics of singularity surfaces for compressible viscous flows in two space dimensions. Comm. Pure Appl. Math. 55, 1365–1407 · Zbl 1020.76046 · doi:10.1002/cpa.10046
[19]Klainerman S., Majda A. (1981). Compressible and incompressible fluids. Comm. Pure Appl. Math. 34, 481–524 · Zbl 0476.76068 · doi:10.1002/cpa.3160340405
[20]Klein R., Botta N., Schneider T., Munz C.D., Roller S., Meister A., Hoffmann L., Sonar T. (2001). Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Engrg. Math. 39, 261–343 · Zbl 1015.76071 · doi:10.1023/A:1004844002437
[21]Lin C.K. (1995). On the incompressible limit of the compressible Navier–Stokes equations. Comm. Partial Differential Equations 20, 677–707 · Zbl 0816.35105 · doi:10.1080/03605309508821108
[22]Lions P.-L., Masmoudi N. (1998). Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77, 585–627 · Zbl 0909.35101 · doi:10.1016/S0021-7824(98)80139-6
[23]Métivier G., Schochet S. (2001) The incompressible limit of the non-isentropic Euler equations. Arch. Ration. Mech. Anal. 158, 61–90 · doi:10.1007/PL00004241
[24]Métivier G., Schochet S. (2003). Averaging theorems for conservative systems and the weakly compressible Euler equations. J. Differential Equations 187, 106–183 · Zbl 1029.34035 · doi:10.1016/S0022-0396(02)00037-2
[25]Müller, I., Ruggeri, T.: Rational extended thermodynamics. Springer Tracts in Natural Philosophy 37. Springer-Verlag, Heidelberg, 1998
[26]Oxenius J. (1986). Kinetic theory of particles and photons. Springer-Verlag, Berlin
[27]Rajagopal K.R., Shrinivasa A.R. (2004). On thermodynamical restrictions of continua. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460, 631–651 · Zbl 1041.74002 · doi:10.1098/rspa.2002.1111
[28]Schochet S. (1986). The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit. Comm. Math. Phys. 104, 49–75 · Zbl 0612.76082 · doi:10.1007/BF01210792
[29]Schochet S. (1994). Fast singular limits of hyperbolic pde’s. J. Differential Equations 114, 476–512 · Zbl 0838.35071 · doi:10.1006/jdeq.1994.1157
[30]Schochet S. (2005). The mathematical theory of low Mach number flows. M2AN 39, 441–458 · Zbl 1094.35094 · doi:10.1051/m2an:2005017