zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The effect of the slip condition on flows of an Oldroyd 6-constant fluid. (English) Zbl 1147.76550
Summary: The steady flows of a non-Newtonian fluid are considered when the slippage between the plate and the fluid is valid. The constitutive equations of the fluid are modeled by those for an Oldroyd 6-constant fluid. They give rise to non-linear boundary value problems. The analytical solutions are obtained using powerful, easy-to-use analytic technique for non-linear problems, the homotopy analysis method. It is shown that solutions exist for all values of non-Newtonian parameters. The solutions valid for no-slip condition for all values of non-Newtonian parameters can be derived as the special cases of the present analysis. Finally, graphs are plotted and critical assessment is made for the cases of slip and no-slip conditions.
76A05Non-Newtonian fluids