zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Invariance properties of a general bond-pricing equation. (English) Zbl 1147.91017
Summary: We perform the group classification of a bond-pricing partial differential equation of mathematical finance to discover the combinations of arbitrary parameters that allow the partial differential equation to admit a nontrivial symmetry Lie algebra. As a result of the group classification we propose “natural” values for the arbitrary parameters in the partial differential equation, some of which validate the choices of parameters in such classical models as that of Vasicek and Cox-Ingersoll-Ross. For each set of these natural parameter values we compute the admitted Lie point symmetries, identify the corresponding symmetry Lie algebra and solve the partial differential equation.
91B24Price theory and market structure
91B28Finance etc. (MSC2000)
35A30Geometric theory for PDE, characteristics, transformations
35K15Second order parabolic equations, initial value problems
[1], Handbook of mathematical functions with formulas, graphs, and mathematical tables (1972) · Zbl 0543.33001 · doi:http://www.cs.bham.ac.uk/~aps/research/projects/as/
[2]Andrews, L. C.: Special functions of mathematics for engineers, (1992)
[3]Bluman, G. W.; Kumei, S.: Symmetries and differential equations, Appl. math. Sci. 81 (1989) · Zbl 0698.35001
[4]P. Carr, A. Lipton, D. Madan, The reduction method for valuing derivative securities, working paper, 2000
[5]Cox, J. C.; Ingersoll, J. E.; Ross, S. A.: An intertemporal general equilibrium model of asset prices, Econometrica 53, 363-384 (1985) · Zbl 0576.90006 · doi:10.2307/1911241
[6]Craddock, M.; Platen, E.: Symmetry group methods for fundamental solutions, J. differential equations 207, 285-302 (2004) · Zbl 1065.35016 · doi:10.1016/j.jde.2004.07.026
[7]Gazizov, R. K.; Ibragimov, N. H.: Lie symmetry analysis of differential equations in finance, Nonlinear dynam. 17, No. 4, 387-407 (1998) · Zbl 0929.35006 · doi:10.1023/A:1008304132308
[8]Goard, J. M.: New solutions to the Bond-pricing equation via Lie’s classical method, Math. comput. Modelling 32, 299-313 (2000) · Zbl 0955.91018 · doi:10.1016/S0895-7177(00)00136-9
[9]Head, A. K.: Lie, a PC program for Lie analysis of differential equations, Comput. phys. Comm. 71, 241-248 (1993) · Zbl 0854.65055 · doi:10.1016/0010-4655(93)90007-Y
[10]Hereman, W.: Symbolic software for Lie symmetry analysis, CRC handbook of Lie group analysis of differential equations, vol. 3: new trends in theoretical development and computational methods 3 (1995)
[11], CRC handbook of Lie group analysis of differential equations, vol. 1 1 (1994)
[12]Kallianpur, G.; Karandikar, R. L.: Introduction to option pricing theory, (2000) · Zbl 0969.91003
[13]Kwok, Y. K.: Mathematical models of financial derivatives, (1998)
[14]Lie, S.: On integration of a class of linear partial differential equations by means of definite integrals, Arch. math. 6, No. 3, 328-368 (1881)
[15]Lo, C. F.; Hui, C. H.: Valuation of financial derivatives with time-independent parameters: Lie-algebraic approach, Quantitative finance 1, 73-78 (2001)
[16]Longstaff, F. A.: A nonlinear general equilibrium model of the term structure of interest rates, J. financ. Econ. 23, 195-224 (1989)
[17]Naicker, V.; Andriopoulos, K.; Leach, P. G. L.: Symmetry reductions of a Hamilton – Jacobi – Bellman equation arising in financial mathematics, J. nonlinear math. Phys. 12, No. 2, 268-283 (2005)
[18]Olver, P. J.: Applications of Lie groups to differential equations, Grad texts in math. 107 (1993)
[19]Platen, E.: A minimal financial market model, Mathematical finance, 293-301 (2001) · Zbl 1004.91029
[20]Pooe, C. A.; Mahomed, F. M.; Soh, C. W.: Fundamental solutions for zero-coupon Bond pricing models, Nonlinear dynam. 36, 69-76 (2004) · Zbl 1122.91335 · doi:10.1023/B:NODY.0000034647.76381.04
[21]Schwarz, F.: Symmetries of differential equations: from sophus Lie to computer algebra, SIAM rev. 30, 450-481 (1988) · Zbl 0664.35004 · doi:10.1137/1030094
[22]Sinkala, W.; Leach, P. G. L.; O’hara, J. G.: Zero-coupon Bond prices in the vasicek and CIR models: their computation as group-invariant solutions, Math. methods appl. Sci. 31, 665-678 (2008) · Zbl 1132.91438 · doi:10.1002/mma.935
[23]Vasicek, O.: An equilibrium characterization of the term structure, J. financ. Econ. 5, 177-188 (1977)
[24]Wolfram, S.: Mathematica: A system for doing mathematics by computer, (1991)