zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive synchronization of two different chaotic systems with time varying unknown parameters. (English) Zbl 1147.93397
Summary: A nonlinear control method based on Lyapunov stability theorem is proposed to design an adaptive controller for synchronizing two different chaotic systems. It is assumed that the unknown parameters of the drive and the response chaotic systems are time varying. It is shown that the proposed scheme can identify the system parameters if the system parameters are time invariant and the richness conditions are satisfied. To demonstrate the effectiveness of the proposed technique it has been applied to Lorenz-Chen dynamic systems, as drive-response systems. Simulation results indicate that the proposed adaptive controller has a high performance in synchronizing two chaotic systems.
93D21Adaptive or robust stabilization
34C15Nonlinear oscillations, coupled oscillators (ODE)
37D45Strange attractors, chaotic dynamics
93C40Adaptive control systems
93D05Lyapunov and other classical stabilities of control systems
93C10Nonlinear control systems