zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On quasi-Einstein Cartan type hypersurfaces. (English) Zbl 1148.53012
The paper under review studies curvature properties of quasi-Einstein Cartan type hypersurfaces in semi-Riemannian manifolds. The main result shows that the Rieman curvature tensor R, Weyl conformal curvature tensor C, and Ricci curvature tensor S of a quasi-Einstein Cartan type hypersurface in a semi-Riemannian space form with scalar curvature κ ˜ satisfy one of the following conditions: (a) R·R=κ ˜ n(n+1)Q(g,R),C·C=n-3 2(n-2)(κ ˜ (n+1)-κ ˜ (n-1))Q(g,C), or (b) R·S=κ ˜ n(n+1)Q(g,S),R·R-κ ˜ n(n+1)Q(g,R)0, and C·C and Q(g,C) are linearly independent, or (c) R·S-κ ˜ n(n+1)Q(g,S)0 and the hypersurface is 2-quasi-umbilical on some neighborhood with C·C=L C Q(g,C) holds on this set.
53B20Local Riemannian geometry
53B25Local submanifolds
53B30Lorentz metrics, indefinite metrics
[1]Akivis, M. A.; Goldberg, V. V.: Semiintegrable almost Grassmann structures, Differential geom. Appl. 10, 257-293 (1999) · Zbl 0921.53006 · doi:10.1016/S0926-2245(99)00014-5
[2]Belkhelfa, M.; Deszcz, R.; Głogowska, M.; Hotloś, M.; Kowalczyk, D.; Verstraelen, L.: A review on pseudosymmetry type manifolds, Banach center publ. 57, 179-194 (2002)
[3]Cecil, T. E.; Ryan, P. J.: Tight and taut immersions of manifolds, (1988)
[4]Chen, B. -Y.; Verstraelen, L.: Codimension 2 submanifolds with a quasi-umbilical normal direction, J. korean math. Soc. 13, 87-97 (1976) · Zbl 0327.53015
[5]Defever, F.; Deszcz, R.; Dhooghe, P.; Verstraelen, L.; Yaprak, S: On Ricci-pseudosymmetric hypersurfaces in spaces of constant curvature, Results math. 27, 227-236 (1995) · Zbl 0832.53015
[6]Defever, F.; Deszcz, R.; Głogowska, M.; Goldberg, V. V.; Verstraelen, L.: A class of four-dimensional warped products, Demonstr. math. 35, 853-864 (2002) · Zbl 1033.53032
[7]Deszcz, R.: On conformally flat Riemannian manifolds satisfying certain curvature conditions, Tensor (N.S.) 49, 134-145 (1990) · Zbl 0742.53006
[8]Deszcz, R.: On pseudosymmetric spaces, Bull. soc. Belg. math., ser. A 44, 1-34 (1992) · Zbl 0808.53012
[9]Deszcz, R.: On certain classes of hypersurfaces in spaces of constant curvature, Geometry and topology of submanifolds, 101-110 (1996) · Zbl 0936.53037
[10]Deszcz, R.: On pseudosymmetric hypersurfaces in spaces of constant curvature, Tensor (N.S.) 58, 253-269 (1997) · Zbl 0938.53024
[11]Deszcz, R.: On some akivis–goldberg type metrics, Publ. inst. Math. (Beograd) (N.S.) 74, No. 84, 71-83 (2003) · Zbl 1080.53019 · doi:10.2298/PIM0374071D · doi:emis:journals/PIMB/088/index.html
[12]Deszcz, R.; Głogowska, M.: Examples of nonsemisymmetric Ricci-semisymmetric hypersurfaces, Colloq. math. 94, 87-101 (2002) · Zbl 1026.53010 · doi:10.4064/cm94-1-7
[13]Deszcz, R.; Głogowska, M.: Some nonsemisymmetric Ricci-semisymmetric warped product hypersurfaces, Publ. inst. Math. (Beograd) 72, No. 86, 81-93 (2002) · Zbl 1060.53024 · doi:10.2298/PIM0272081D
[14]Deszcz, R.; Głogowska, M.; Hotloś, M.; Sẹntürk, Z.: On certain quasi-Einstein semisymmetric hypersurfaces, Ann. univ. Sci. Budapest eötvös sect. Math. 41, 151-164 (1998) · Zbl 0955.53029
[15]Deszcz, R.; Głogowska, M.; Hotloś, M.; Verstraelen, L.: On some generalized Einstein metric conditions on hypersurfaces in semi-Riemannian space forms, Colloq. math. 96, 149-166 (2003) · Zbl 1050.53020 · doi:10.4064/cm96-2-1
[16]Deszcz, R.; Haesen, S.; Verstraelen, L.: Classification of space-times satisfying some pseudo-symmetry type conditions, Soochow J. Math. 30, 339-349 (2004) · Zbl 1082.53019
[17]Deszcz, R.; Hotloś, M.: On a certain subclass of pseudosymmetric manifolds, Publ. math. Debrecen 53, 29-48 (1998) · Zbl 0907.53013
[18]Deszcz, R.; Hotloś, M.: On some pseudosymmetry type curvature condition, Tsukuba J. Math. 27, 13-30 (2003) · Zbl 1047.53040
[19]Deszcz, R.; Hotloś, M.: On hypersurfaces with type number two in space forms, Ann. univ. Sci. Budapest eötvös sect. Math. 46, 19-34 (2003) · Zbl 1083.53023
[20]Deszcz, R.; Hotloś, M.; Sẹntürk, Z.: On the equivalence of the Ricci-pseudosymmetry and pseudosymmetry, Colloq. math. 79, 211-227 (1999) · Zbl 0926.53012
[21]Deszcz, R.; Hotloś, M.; Sẹntürk, Z.: Quasi-Einstein hypersurfaces in semi-Riemannian space forms, Colloq. math. 89, 81-97 (2001) · Zbl 0991.53009 · doi:10.4064/cm89-1-6
[22]R. Deszcz, M. Hotloś, Z. Snbsp;entürk, On curvature properties of certain quasi-Einstein hypersurfaces, Dept. Math., Agricultural Univ. Wrocław, Ser. A, Theory and Methods, Report No. 104, 2002
[23]Deszcz, R.; Kowalczyk, D.: On some class of pseudosymmetric warped products, Colloq. math. 97, 7-22 (2003) · Zbl 1053.53017 · doi:10.4064/cm97-1-2
[24]Deszcz, R.; Scherfner, M.: On a particular class of warped products with fibres locally isometric to generalized Cartan hypersurfaces, Colloq. math. 109, 13-29 (2007) · Zbl 1124.53007 · doi:10.4064/cm109-1-3
[25]Deszcz, R.; Verstraelen, L.: Hypersurfaces of semi-Riemannian conformally flat manifolds, Geometry and topology of submanifolds, 131-147 (1991) · Zbl 0731.53021
[26]Deszcz, R.; Verstraelen, L.; Yaprak, S: On 2-quasi-umbilical hypersurfaces in conformally flat spaces, Acta math. Hungarica 78, 45-57 (1998) · Zbl 0905.53012 · doi:10.1023/A:1006566319359
[27]Deszcz, R.; Verstraelen, L.; Yaprak, S: Pseudosymmetric hypersurfaces in 4-dimensional spaces of constant curvature, Bull. inst. Math. acad. Sinica 22, 167-179 (1994) · Zbl 0811.53014
[28]Deszcz, R.; Yaprak, S: Curvature properties of Cartan hypersurfaces, Colloq. math. 67, 91-98 (1994) · Zbl 0816.53032
[29]Głogowska, M.: Curvature properties of some four-dimensional manifolds, Demonstr. math. 34, 901-918 (2001) · Zbl 0999.53016
[30]Głogowska, M.: Semi-Riemannian manifolds whose Weyl tensor is a kulkarni–nomizu square, Publ. inst. Math. (Beograd) (N.S.) 72, No. 86, 95-106 (2002) · Zbl 1060.53025 · doi:10.2298/PIM0272095G
[31]Głogowska, M.: On a curvature characterization of Ricci-pseudosymmetric hypersurfaces, Acta math. Scientia 24B, 361-375 (2004) · Zbl 1068.53019
[32]Głogowska, M.: Curvature conditions on hypersurfaces with two distinct principal curvatures, Banach center publ. 69, 133-143 (2005) · Zbl 1089.53022
[33]Haesen, S.; Verstraelen, L.: Properties of a scalar curvature invariant depending on two planes, Manuscripta math. 122, 59-72 (2007) · Zbl 1109.53020 · doi:10.1007/s00229-006-0056-0
[34]Jahanara, B.; Haesen, S.; Sẹntürk, Z.; Verstraelen, L.: On the parallel transport of the Ricci curvatures, J. geom. Phys. 57, 1771-1777 (2007) · Zbl 1169.53016 · doi:10.1016/j.geomphys.2007.02.008
[35]Kowalczyk, D.: On the Reissner–Nordstrom-de Sitter type spacetimes, Tsukuba J. Math. 30, 263-281 (2006)
[36]Sawicz, K.: Hypersurfaces in spaces of constant curvature satisfying some Ricci-type equations, Colloq. math. 101, 183-201 (2004) · Zbl 1086.53079 · doi:10.4064/cm101-2-4
[37]Sawicz, K.: On some class of hypersurfaces with three distinct principal curvatures, Banach center publ. 69, 145-156 (2005) · Zbl 1091.53010
[38]Sawicz, K.: On curvature characterization of some hypersurfaces in spaces of constant curvature, Publ. inst. Math. (Beograd) (N.S.) 79, No. 93, 95-107 (2006) · Zbl 1121.53012 · doi:10.2298/PIM0693095S