zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Symmetry reductions and exact solutions of the affine heat equation. (English) Zbl 1149.35306
Summary: Lie symmetry group method is applied to study the affine heat equation for surface. Its symmetry groups and corresponding optimal systems are determined, and group-invariant solutions associated to the symmetries are obtained and classified.
35A30Geometric theory for PDE, characteristics, transformations
58J70Invariance and symmetry properties
35C05Solutions of PDE in closed form
[1]Abresch, U.; Langer, J.: The normalized curve shortening flow and homothetic solutions, J. differential geom. 23, 175-196 (1986) · Zbl 0592.53002
[2]Altschuler, S.: Singularities of the curve shrinking flow for space curves, J. differential geom. 34, 491-514 (1991) · Zbl 0754.53006
[3]Alvarez, L.; Guichard, F.; Lions, P. L.; Morel, J. M.: Axioms and fundamental equations of image processing, Arch. ration. Mech. anal. 123, 199-257 (1993) · Zbl 0788.68153 · doi:10.1007/BF00375127
[4]Andrews, B.: Motion of hypersurfaces by Gauss curvature, Pacific J. Math. 195, 1-34 (2000) · Zbl 1028.53072 · doi:10.2140/pjm.2000.195.1
[5]Andrews, B.: Contraction of convex hypersurfaces in Euclidean space, Calc. var. 2, 151-171 (1994) · Zbl 0805.35048 · doi:10.1007/BF01191340
[6]Andrews, B.: Contraction of convex hypersurfaces by their affine normal, J. differential geom. 43, 207-230 (1996) · Zbl 0858.53005
[7]Angenent, S.: Parabolic equations for curves on surfaces, part II. Intersections, blow up and generalized solutions, Ann. of math. 133, 171-215 (1991) · Zbl 0749.58054 · doi:10.2307/2944327
[8]Angenent, S.: On the formation of singularities in the curve shortening flow, J. differential geom. 33, 601-634 (1991) · Zbl 0731.53002
[9]Angenent, S.; Sapiro, G.; Tannenbaum, A.: On the affine heat equation for non-convex curves, J. amer. Math. soc. 11, 601-633 (1998) · Zbl 0902.35048 · doi:10.1090/S0894-0347-98-00262-8
[10]Angenent, S.; Pichon, E.; Tannenbaum, A.: Mathematical methods in medical image processing, Bull. amer. Math. soc., 365-396 (2006) · Zbl 1096.92027 · doi:10.1090/S0273-0979-06-01104-9
[11]Bluman, G. W.; Kumei, S.: Symmetries and differential equations, (1989)
[12]Bluman, G. W.; Anco, S. C.: Symmetry and integration methods for differential equations, (2002)
[13]Calabi, E.; Olver, P. J.; Tannenbaum, A.: Affine geometry, curve flows and the invariant numerical approximations, Adv. math. 124, 154-196 (1996) · Zbl 0973.53006 · doi:10.1006/aima.1996.0081
[14]Cao, F.: Geometric curve evolution and image processing, (2003)
[15]Chou, K. S.; Zhu, X. P.: The curve shortening problem, (2001)
[16]Chou, K. S.; Li, G. X.: Optimal systems and invariant solutions for the curve shortening problem, Comm. anal. Geom. 10, 241-274 (2002) · Zbl 1029.53080
[17]Chou, K. S.; Li, G. X.; Qu, C. Z.: A note on optimal system for the heat equation, J. math. Anal. appl. 261, 741-751 (2001) · Zbl 0992.35006 · doi:10.1006/jmaa.2001.7579
[18]Gage, M.; Hamilton, R. S.: The heat equation shrinking convex plane curves, J. differential geom. 23, 69-96 (1986) · Zbl 0621.53001
[19]Grayson, M.: The heat equation shrinks embeded plane curves to round points, J. differential geom. 26, 285-314 (1987) · Zbl 0667.53001
[20]Huang, Q.; Qu, C. Z.: Symmetries and invariant solutions for the geometric heat flows, J. phys. A 40, 9343-9360 (2007) · Zbl 1130.58021 · doi:10.1088/1751-8113/40/31/012
[21]Huisken, G.: Flow by mean curvature of convex surfaces into spheres, J. differential geom. 20, 237-266 (1984) · Zbl 0556.53001
[22]Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow, J. differential geom. 31, 285-299 (1990) · Zbl 0694.53005
[23]Ibragimov, N. H.: Transformation groups applied to mathematical physics, (1985)
[24]Kimia, B. B.; Tannenbaum, A.; Zucker, S. W.: On the evolution of curves via a function of curvature, I: The classical case, J. math. Anal. appl. 163, 438-458 (1992) · Zbl 0771.53003 · doi:10.1016/0022-247X(92)90260-K
[25]Kimia, B. B.; Tannenbaum, A.; Zucker, S. W.: Shapes, shocks, and deformations, Int. J. Comput. vis. 15, 189-224 (1995)
[26]Nien, C. H.; Tsai, D. H.: Convex curves moving translationally in the plane, J. differential equations 225, 605-623 (2006) · Zbl 1098.35080 · doi:10.1016/j.jde.2006.03.005
[27]Oaks, J. A.: Singularities and self intersections of curves evolving on surface, Indiana univ. Math. J. 43, 959-981 (1994) · Zbl 0835.53048 · doi:10.1512/iumj.1994.43.43042
[28]Olver, P. J.; Sapiro, G.; Tannenbaum, A.: Affine invariant detection: edge maps, anisotropic diffusion and active contours, Acta appl. Math. 59, 45-77 (1999) · Zbl 1005.53010 · doi:10.1023/A:1006295328209
[29]Olver, P. J.: Applications of Lie groups to differential equations, (1986)
[30]Osher, S. J.; Sethian, J. A.: Fronts propagating with curvature dependent speed: algorithms based on the Hamilton – Jacobi formulation, J. comput. Phys. 79, 12-49 (1988) · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[31]Ovsiannikov, L. V.: Group analysis of differential equations, (1982) · Zbl 0485.58002
[32]Sapiro, G.; Tannenbaum, A.: Affine invariant scale-space, Int. J. Comput. vis. 11, 25-44 (1993)
[33]Sapiro, G.; Tannenbaum, A.: Invariant curve evolution and image processing, Indiana univ. Math. J. 42, 985-1009 (1993) · Zbl 0793.53002 · doi:10.1512/iumj.1993.42.42046
[34]Sapiro, G.; Tannenbaum, A.: On affine plane curve evolution, J. funct. Anal. 119, 79-120 (1994) · Zbl 0801.53008 · doi:10.1006/jfan.1994.1004
[35]Sapiro, G.: Geometric partial differential equations and image analysis, (2001)
[36]Sethian, J. A.: Level set methods: evolving interfaces in geometry, fluid mechanics, computer vision and materials sciences, (1996)