zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Inexact operator splitting methods with selfadaptive strategy for variational inequality problems. (English) Zbl 1149.49010
Summary: The Peaceman-Rachford and Douglas-Rachford operator splitting methods are advantageous for solving variational inequality problems, since they attack the original problems via solving a sequence of systems of smooth equations, which are much easier to solve than the variational inequalities. However, solving the subproblems exactly may be prohibitively difficult or even impossible. In this paper, we propose an inexact operator splitting method, where the subproblems are solved approximately with some relative error tolerance. Another contribution is that we adjust the scalar parameter automatically at each iteration and the adjustment parameter can be a positive constant, which makes the methods more practical and efficient. We prove the convergence of the method and present some preliminary computational results, showing that the proposed method is promising.

MSC:
49J40Variational methods including variational inequalities
47H05Monotone operators (with respect to duality) and generalizations
49M27Decomposition methods in calculus of variations
References:
[1]Martinet, B., Regularization d’Inéquations Variationelles par Approximations Successives, Revue Francaise d”Informatique et de Recherche Opérationelle, Vol. 4, pp. 154–159, 1970.
[2]Peaceman, D.H., and Rachford, H.H., The Numerical Solution of Parabolic Elliptic Differential Equations, SIAM Journal on Applied Mathematics, Vol. 3, pp. 28–41, 1955. · Zbl 0067.35801 · doi:10.1137/0103003
[3]Douglas, J., and Rachford, H.H., On the Numerical Solution of the Heat Conduction Problem in 2 and 3 Space Variables, Transactions of American Mathematical Society, Vol. 82, pp. 421–439, 1956. · doi:10.1090/S0002-9947-1956-0084194-4
[4]Varga, R.S., Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1966.
[5]Lions, P.L., and Mercier, B., Splitting Algorithms for the Sum of Two Nonlinear Operators, SIAM Journal on Numerical Analysis, Vol. 16, pp. 964–979, 1979. · Zbl 0426.65050 · doi:10.1137/0716071
[6]Glowinski, R., Numerical Methods for Nonlinear Variational Problems, Springer Verlag, New York, NY, 1984.
[7]Glowinski, R. and Le Tallec, P., Augmented Lagrangian and Operator-Splitting Method in Nonlinear Mechanics, SIAM Studies in Applied Mathematics, Philadelphia, Pennsylvania, 1989.
[8]Fukushima, M., The Primal Douglas-Rachford Splitting Algorithm for a Class of Monotone Mappings with Application to the Traffic Equilibrium Problem, Mathematical Programming, Vol. 72, pp. 1–15, 1996.
[9]He, B.S., Inexact Implicit Methods for Monotone General Variational Inequalities, Mathematical Programming, Vol. 86, pp. 199–217, 1999. · Zbl 0979.49006 · doi:10.1007/s101070050086
[10]He, B.S., Liao L.Z., and Wang, S.L., Selfadaptive Operator Splitting Methods for Monotone Variational Inequalities, Numerische Mathematik, Vol. 94, pp. 715–737, 2003.
[11]Noor, M.A., An Implicit Method for Mixed Variational Inequalities, Applied Mathematics Letters, Vol. 11, pp. 109–113, 1998. · Zbl 0941.49005 · doi:10.1016/S0893-9659(98)00066-4
[12]Noor, M.A., Algorithms for General Monotone Mixed Variational Inequalities, Journal of Mathematical Analysis and Applications, Vol. 229, 330–343, 1999.
[13]Huang, N.J., A New Method for a Class of Nonlinear Variational Inequalities with Fuzzy Mapping, Applied Mathematics Letters, Vol. 10, pp. 129–133, 1997. · Zbl 0906.49003 · doi:10.1016/S0893-9659(97)00116-X
[14]Huang, N.J., A New Method for a Class of Set-Valued Nonlinear Variational Inequalities, Zeitschrift fuuml;r Angewandte Mathematik und Mechanik, Vol. 78, pp. 427–430, 1998. · doi:10.1002/(SICI)1521-4001(199806)78:6<427::AID-ZAMM427>3.0.CO;2-J
[15]Han,D.R., and He, B.S., A New Accuracy Criterion for Approximate Proximal Point Methods, Journal of Mathematical Analysis and Applications, Vol. 263, pp. 343–354, 2001. · Zbl 0995.65062 · doi:10.1006/jmaa.2001.7535
[16]Rockafellar, R.T., Monotone Operators and the Proximal Point Algorithm, SIAM Journal on Control and Optimization, Vol. 14, pp. 877–898, 1976. · Zbl 0358.90053 · doi:10.1137/0314056
[17]Bertsekas, D.P., and Tsitsiklis, J.N., Parallel and Distributed Computation: Numerical Methods, Prentice-Hall, Englewood Cliffs, New Jersey, 1989.
[18]Eaves, B.C., Computing Stationary Points, Mathematical Programming Study, Vol. 7, pp. 1–14, 1978.
[19]B.S. He, Some Predictor-Corrector Projection Methods for Monotone Variational Inequalities, Report 95–68, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft, Holland, 1995.
[20]Pang, J.S., Error Bounds in Mathematical Programming, Mathematical Programming, Vol. 79, pp. 299–332, 1997.
[21]Solodov, M.V., and Svaiter, B.F., A Hybrid Approximate Extragradient. Proximal Point Algorithm Using the Enlargement of a Maximal Monotone Operator, Set-Valued Analysis, Vol. 7, pp. 323–345, 1999. · Zbl 0959.90038 · doi:10.1023/A:1008777829180
[22]Harker, P.T., and Pang, J.S., A Damped-Newton Method for the Linear Complementarity Problem, Lectures in Applied Mathematics, Vol. 26, pp. 265–284, 1990.
[23]Marcotee, P., and Dussault, J.P., A Note on a Globally Convergent Newton Method for Solving Variational Inequalities, Operation Research Letters, Vol. 6, pp. 35–42, 1987. · Zbl 0623.65073 · doi:10.1016/0167-6377(87)90007-1
[24]Taji, K., Fukishima, M., and Ibaraki, T., A Globally Convergent Newton Method for Solving Strongly Monotone Variational Inequalities, Mathematical Programming, Vol. 58, pp. 369–383, 1993. · Zbl 0792.49007 · doi:10.1007/BF01581276