zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new nonmonotone line search technique for unconstrained optimization. (English) Zbl 1149.65045
Authors’ summary: We propose a new nonmonotone line search technique for unconstrained optimization problems. By using this new technique, we establish the global convergence under conditions weaker than those of the existed nonmonotone line search techniques.
MSC:
65K05Mathematical programming (numerical methods)
90C53Methods of quasi-Newton type
90C30Nonlinear programming
References:
[1]Buckley, A.: Combining conjugate gradient and quasi-Newton minimization algorithm, Math. programming 15, 200-210 (1978) · Zbl 0386.90051 · doi:10.1007/BF01609018
[2]Byrd, R. H.; Nocedal, J.; Schnabel, R. B.: Representations of quasi-Newton matrices their use in limited memory methods, Math. programming 63, 129-156 (1994) · Zbl 0809.90116 · doi:10.1007/BF01582063
[3]Dai, Y. H.: On the nonmonotone line search, J. optim. Theory appl. 112, 315-330 (2001)
[4]Dennis, J. E.; Schnabel, R. B.: Numerical methods for unconstrained optimization and nonlinear equations, (1993)
[5]Fletcher, R.: Practical methods of optimization, (1987) · Zbl 0905.65002
[6]Grippo, L.; Lampariello, F.; Lucidi, S.: A nonmonotone line search technique for Newton’s methods, SIAM J. Numer. anal. 23, 707-716 (1986) · Zbl 0616.65067 · doi:10.1137/0723046
[7]Grippo, L.; Lampariello, F.; Lucidi, S.: A truncated Newton method with nonmonotone line search for unconstrained optimization, J. optim. Theory appl. 60, 410-419 (1989) · Zbl 0632.90059 · doi:10.1007/BF00940345
[8]Liu, G.; Han, J.; Sun, D.: Global convergence of BFGS algorithm with nonmonotone line search, Optimization 34, 147-159 (1995) · Zbl 0858.90122 · doi:10.1080/02331939508844101
[9]Liu, G. H.; Jing, L.: Convergence of nonmonotone perry and shanno methods for optimization, Comput. optim. And appl. 16, 159-172 (2000) · Zbl 0963.90047 · doi:10.1023/A:1008753308646
[10]Panier, E. R.; Tits, A. L.: Avoiding maratos effect by means of nonmonotone line search constrained problems, SIAM J. Numer. anal. 28, 1183-1190 (1991) · Zbl 0732.65055 · doi:10.1137/0728063
[11]J.M. Perry, A class of conjugate gradient algorithms with a step variable metric memory, Discussion Paper 269, Center for Mathematical Studies in Economical and Management Science, Northwest University, Evanston, 1977.
[12]M.J.D. Powell, Some global convergence properties of variable metric algorithm for minimization without exact line searches, in: R.W. Cottle, C.E. Lemke, (Eds.), Nonlinear programming, SIAM-AMS proceeding, vol. 9, 1976, pp. 53 – 72. · Zbl 0338.65038
[13]Shanno, D. F.: On the convergence of a new conjugate gradient algorithm, SIAM J. Numer. anal. 15, 1247-1257 (1978) · Zbl 0408.90071 · doi:10.1137/0715085
[14]Shanno, D. F.: Conjugate gradient method with inexact searches, Math. of oper. Res. 3, 244-256 (1978) · Zbl 0399.90077 · doi:10.1287/moor.3.3.244
[15]Sun, W.; Yuan, Y.: Optimization theory and methods, (1997)
[16]Sun, W. Y.; Han, J. Y.; Sun, J.: Global convergence of non-monotone descent methods for unconstrained optimization problems, J. comput. Appl. math. 146, 89-98 (2002) · Zbl 1007.65044 · doi:10.1016/S0377-0427(02)00420-X
[17]Toint, P. L.: An assessment of nonmonotone line search technique for unconstrained optimization, SIAM J. On scientific comput. 17, 725-739 (1996) · Zbl 0849.90113 · doi:10.1137/S106482759427021X
[18]Toint, P. L.: A nonmonotone trust region algorithm for nonlinear programming subject to convex constraints, Math. programming 77, 69-94 (1997) · Zbl 0891.90153
[19]Ulbrich, M.: Nonmonotone trust region methods for bound-constrained semi-smooth equation with application to nonlinear complementarity problems, SIAM J. On optimiz. 11, 889-917 (2001) · Zbl 1010.90085 · doi:10.1137/S1052623499356344