zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Model-matching-based control of the Beverton-Holt equation in ecology. (English) Zbl 1149.92029
Summary: This paper discusses the generation of a carrying capacity of the environment so that the famous Beverton-Holt equation of ecology has a prescribed solution. The way used to achieve the tracking objective is the design of a carrying capacity through a feedback law so that the prescribed reference sequence, which defines the suitable behavior, is achieved. The advantage that the inverse of the Beverton-Holt equation is a linear time-varying discrete dynamic system whose external input is the inverse of the environment carrying capacity is taken in mind. In the case when the intrinsic growth rate is not perfectly known, an adaptive law implying parametrical estimation is incorporated into the scheme so that the tracking property of the reference sequence becomes an asymptotic objective in the absence of additive disturbances. The main advantage of the proposal is that the population evolution might behave as a prescribed one either for all time or asymptotically, which defines the desired population evolution. The technique might be of interest in some industrial exploitation problems like, for instance, in aquaculture management.
MSC:
92D40Ecology
39A11Stability of difference equations (MSC2000)