zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Renormalized solutions of nonlinear parabolic equations with general measure data. (English) Zbl 1150.35060

The author proves the existence of a renormalized solution of the following initial-boundary value problem for the parabolic p-Laplacian

u t -Δ p u=μin(0,T)×Ω,u(0,x)=u 0 inΩ,u(t,x)=0on(0,T)×Ω,

where Ω n , n2, is a bounded and open set and μM(Q) is a measure with bounded variation over Q=(0,T)×Ω·

35K55Nonlinear parabolic equations
35K20Second order parabolic equations, initial boundary value problems
35D05Existence of generalized solutions of PDE (MSC2000)
35D10Regularity of generalized solutions of PDE (MSC2000)
35R05PDEs with discontinuous coefficients or data
[1]Andreu F., Mazon J.M., Segura De Leon S. and Toledo J. (1999). Existence and uniqueness for a degenerate parabolic equation with L 1-data. Trans. Am. Math. Soc. 351(1): 285–306 · Zbl 0912.35092 · doi:10.1090/S0002-9947-99-01981-9
[2]Bénilan P., Boccardo L., Gallouët T., Gariepy R., Pierre M. and Vazquez J.L. (1995). An L 1-theory of existence and uniqueness of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22: 241–273
[3]Boccardo L., Dall’Aglio A., Gallouët T. and Orsina L. (1997). Nonlinear parabolic equations with measure data. J. Funct. Anal. 147(1): 237–258 · Zbl 0887.35082 · doi:10.1006/jfan.1996.3040
[4]Boccardo L., Gallouët T. and Orsina L. (1996). Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data. Ann. Inst. H. Poincaré Anal. Non Linéaire 13: 539–551
[5]Blanchard D. and Murat F. (1997). Renormalized solutions of nonlinear parabolic problems with L 1-data: existence and uniqueness. Proc. R. Soc. Edinburgh Sect. A 127: 1137–1152
[6]Blanchard D. and Porretta A. (2001). Nonlinear parabolic equations with natural growth terms and measure initial data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30: 583–622
[7]Brezis H. and Ponce A.C. (2004). Kato’s inequality when Δu is a measure. C. R. Acad. Sci. Paris, Ser. I 339: 599–604
[8]Dall’Aglio A. and Orsina L. (1992). Existence results for some nonlinear parabolic equations with nonregular data. Diff. Int. Equ. 5: 1335–1354
[9]Dal Maso G., Murat F., Orsina L. and Prignet A. (1999). Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28: 741–808
[10]Droniou, J.: Intégration et Espaces de Sobolev à valeurs vectorielles, Polycopié de l’Ecole Doctorale de Mathématiques-Informatique de Marseille, available at http://www-gm3.univ-mrs.fr/polys
[11]Droniou J., Porretta A. and Prignet A. (2003). Parabolic capacity and soft measures for nonlinear equations. Potential Anal. 19(2): 99–161 · Zbl 1017.35040 · doi:10.1023/A:1023248531928
[12]Droniou J. and Prignet A. (2007). Equivalence between entropy and renormalized solutions for parabolic equations with smooth measure data. NoDEA Nonlinear Differential Equations Appl. 14: 181–205 · Zbl 1151.35045 · doi:10.1007/s00030-007-5018-z
[13]Dupaigne L. and Ponce A.C. (2004). Singularities of positive supersolutions in elliptic PDEs. Selecta Math. (N.S.) 10(3): 341–358 · Zbl 1133.35335 · doi:10.1007/s00029-004-0390-6
[14]Fukushima M., Sato K. and Taniguchi S. (1991). On the closable part of pre-Dirichlet forms and the fine supports of underlying measures. Osaka J. Math. 28: 517–535
[15]Heinonen J., Kilpeläinen T. and Martio O. (1993). Nonlinear Potential Theory of Degenerate EllipticEquations. Oxford University Press, Oxford
[16]Landes R. (1981). On the existence of weak solutions for quasilinear parabolic boundary value problems. Proc. R. Soc. Edinburgh Sect. A 89: 217–237
[17]Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaire. Dunod et Gautier-Villars (1969)
[18]Petitta F. (2007). Asymptotic behavior of solutions for linear parabolic equations with general measure data. C. R. Acad. Sci. Paris, Ser. I. 344: 571–576
[19]Pierre M. (1983). Parabolic capacity and Sobolev spaces. SIAM J. Math. Anal. 14: 522–533 · Zbl 0529.35030 · doi:10.1137/0514044
[20]Porretta A. (1999). Existence results for nonlinear parabolic equations via strong convergence of truncations. Ann. Mat. Pura ed Appl. (IV) 177: 143–172 · Zbl 0957.35066 · doi:10.1007/BF02505907
[21]Prignet A. (1995). Remarks on existence and uniqueness of solutions of elliptic problems with right-hand side measures. Rend. Mat. 15: 321–337
[22]Prignet A. (1997). Existence and uniqueness of entropy solutions of parabolic problems with L 1 data. Nonlinear. Anal. TMA 28: 1943–1954 · Zbl 0909.35075 · doi:10.1016/S0362-546X(96)00030-2
[23]Serrin J. (1964). Pathological solutions of elliptic differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18: 385–387
[24]Stampacchia G. (1965). Le problème de Dirichlet pour les équations elliptiques du seconde ordre à coefficientes discontinus. Ann. Inst. Fourier (Grenoble) 15: 189–258