zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the closure of the feasible set in generalized semi-infinite programming. (English) Zbl 1151.90562
Summary: In generalized semi-infinite programming the feasible set is known to be not closed in general. In this paper, under natural and generic assumptions, the closure of the feasible set is described in explicit terms.
MSC:
90C34Semi-infinite programming
90C46Optimality conditions, duality
90C31Sensitivity, stability, parametric optimization
90C47Minimax problems
References:
[1]Graettinger TJ, Krogh BH (1988) The acceleration radius: a global performance measure for robotic manipulators. IEEE J Robot Autom 4:60–69 · doi:10.1109/56.772
[2]Hettich R, Kortanek KO (1993) Semi-infinite programming: theory, methods, and applications. SIAM Rev 35:380–429 · Zbl 0784.90090 · doi:10.1137/1035089
[3]Horst R, Tuy H (1990) Global optimization. Springer, Berlin
[4]Jongen HTh, Jonker P, Twilt F (2000) Nonlinear optimization in finite dimensions. Kluwer, Dordrecht
[5]Jongen HTh, Rückmann J-J (1999) One-parameter families of feasible sets in semi-infinite optimization. J Global Optim 14:181–203 · Zbl 0933.90062 · doi:10.1023/A:1008282216306
[6]Stein O (2001) First order optimality conditions for degenerate index sets in generalized semi-infinite programming. Math Oper Res 26:565–582 · Zbl 1073.90562 · doi:10.1287/moor.26.3.565.10583
[7]Stein O (2003) Bi-level strategies in semi-infinite programming. Kluwer, Boston
[8]Stein O (2006) A semi-infinite approach to design centering. In: Dempe S, Kalashnikov V (eds) Optimization with multivalued mappings. Springer, Heidelberg, pp 209–228
[9]Winterfeld A (2004) Maximizing volumes of lapidaries by use of hierarchical GSIP-models. Diploma Thesis, Technische Universität Kaiserlautern and Fraunhofer Institut für Techno- und Wirtschaftsmathematik