zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stable cycles in a Cournot duopoly model of Kopel. (English) Zbl 1151.91458
Summary: We consider a discrete map proposed by M. Kopel [Chaos Solitons Fractals 7, No. 12, 2031–2048 (1996; Zbl 1080.91541)] that models a nonlinear Cournot duopoly consisting of a market structure between the two opposite cases of monopoly and competition. The stability of the fixed points of the discrete dynamical system is analyzed. Synchronization of two dynamics parameters of the Cournot duopoly is considered in the computation of stability boundaries formed by parts of codim-1 bifurcation curves. We discover more on the dynamics of the map by computing numerically the critical normal form coefficients of all codim-1 and codim-2 bifurcation points and computing the associated two-parameter codim-1 curves rooted in some codim-2 points. It enables us to compute the stability domains of the low-order iterates of the map. We concentrate in particular on the second, third and fourth iterates and their relation to the period doubling, 1:3 and 1:4 resonant Neimark-Sacker points.
MSC:
91B26Market models (auctions, bargaining, bidding, selling, etc.)
References:
[1]Agiza, H. N.: Explicit stability zones for cournot games with 3 and 4 competitors, Chaos solitons fractals 9, 1955-1966 (1998) · Zbl 0952.91003 · doi:10.1016/S0960-0779(98)00006-X
[2]Agiza, H. N.: On the analysis of stability, bifurcation, chaos and chaos control of kopel map, Chaos solitons fractals 10, 1909-1916 (1999) · Zbl 0955.37022 · doi:10.1016/S0960-0779(98)00210-0
[3]Agiza, H. N.; Bischi, G. I.; Kopel, M.: Multistability in a dynamic cournot game with three oligopolists, Math. comput. Simulation 51, 63-90 (1999)
[4]Agiza, H. N.; Elsadany, A. A.; Kopel, M.: Nonlinear dynamics in the cournot duopoly game with heterogeneous players, Physica A 320, 512-524 (2003) · Zbl 1010.91006 · doi:10.1016/S0378-4371(02)01648-5
[5]Agiza, H. N.; Hegazi, A. S.; Elsadany, A. A.: Complex dynamics and synchronization of a duopoly game with bounded rationality, Math. comput. Simulation 58, 133-146 (2002) · Zbl 1002.91010 · doi:10.1016/S0378-4754(01)00347-0
[6]Ahmed, E.; Agiza, H. N.: Dynamics of a cournot game with n-competitors, Chaos solitons fractals 9, 1513-1517 (1998) · Zbl 0952.91004 · doi:10.1016/S0960-0779(97)00131-8
[7]Allgower, E. L.; Georg, K.: Numerical continuation methods: an introduction, (1990)
[8]Anderson, D. R.; Myran, N. G.; White, D. L.: Basin of attraction in a cournot duopoly model of kopel, J. differential equations appl. 11, No. 10, 879-887 (2005) · Zbl 1111.39010 · doi:10.1080/10236190512331333888
[9]Bischi, G. I.; Mammana, A.; Gardini, L.: Multistability and cyclic attractors in duopoly games, Chaos solitons fractals 11, 543-564 (2000) · Zbl 0960.91017 · doi:10.1016/S0960-0779(98)00130-1
[10]Carcassès, J. P.: Determination of different configurations of fold and flip bifurcation curves of one or two-dimensional map, Internat. J. Bifur chaos 3, No. 4, 869-902 (1993) · Zbl 0894.58047 · doi:10.1142/S0218127493000763
[11]Carcassès, J. P.: Singularities of the parametric plane of an n-dimensional map, determination of different configurations of fold and flip bifurcation curves, Int. J. Bifurcation chaos 5, No. 2, 419-447 (1995) · Zbl 0885.58057 · doi:10.1142/S0218127495000351
[12]Carcassès, J. P.; Mira, C.; Simó, C.; Bosch, M.; Tatjer, J. C.: ”Cross-road area – spring area” transition (I) parameter plane representation, Internat. J. Bifurcation chaos 1, No. 2, 339-348 (1991) · Zbl 0876.58035 · doi:10.1142/S0218127491000269
[13]A. Cournot, Researches into the principles of wealth, 1963 (English Translation), Irwin Paperback Classics in Economics (original: Recherches sur les principes mathématiques de la théorie des richesses, 1838).
[14]A. Dhooge, W. Govaerts, Yu.A. Kuznetsov, W. Mestrom, A. Riet, CLMATCONT: a continuation toolbox in Matlab, 2004, nbsp;http://www.matcont.UGent.benbsp;.
[15]Govaerts, W.; Ghaziani, R. Khoshsiar: Numerical bifurcation analysis of a nonlinear stage structured cannibalism population model, J. differential equations appl 12, No. 10, 1069-1085 (2006) · Zbl 1108.37057 · doi:10.1080/10236190600986560
[16]W. Govaerts, R. Khoshsiar Ghaziani, Yu. A. Kuznetsov, H. Meijer, Bifurcation analysis of periodic orbits of maps in Matlab, 2006, preprint.
[17]Kopel, M.: Simple and complex adjustment dynamics in cournot duopoly models, Chaos solitons fractals 12, 2031-2048 (1996) · Zbl 1080.91541 · doi:10.1016/S0960-0779(96)00070-7
[18]Kuznetsov, Yu.A.: Elements of applied bifurcation theory, (2004)
[19]Kuznetsov, Yu.A.; Meijer, H. G. E.: Numerical normal forms for codim 2 bifurcations of maps with at most two critical eigenvalues, SIAM J. Sci. comput. 26, 1932-1954 (2005) · Zbl 1080.37056 · doi:10.1137/030601508
[20]Mira, C.; Carcassès, J. P.; Bosch, M.; Simó, C.; Tatjer, J. C.: ”Cross-road area – spring area” transition (II) foliated parametric representation, Internat. J. Bifurcation chaos 1, No. 2, 339-348 (1991) · Zbl 0876.58035 · doi:10.1142/S0218127491000269
[21]Nash, J.: Non-cooperative games, Ann. math. 54, 286-295 (1951) · Zbl 0045.08202 · doi:10.2307/1969529
[22]Puu, T.: Chaos in duopoly pricing, Chaos solitons fractals 1, 573-581 (1991)
[23]Puu, T.: The chaotic duopolists revisited, J. econom. Behav. organ. 33, 385-394 (1998)
[24]Rand, D.: Exotic phenomena in games duopoly models, J. math. Econom 5, 173-184 (1978) · Zbl 0393.90014 · doi:10.1016/0304-4068(78)90022-8
[25]Rosser, J. B.: The development of complex oligopoly dynamics theory, Text book oligopoly dynamics: models and tools, 31-83 (2002)