zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane. (English) Zbl 1152.30024
The difference analogue of some basic results of Nevanlinna theory are proved in the paper.These results are applied to investigate the growth of meromorphic solutions to higher order linear difference equations. This paper is certainly helpful to those who are interested in the difference analogue of Nevanlinna theory.

30D35Distribution of values (one complex variable); Nevanlinna theory
30D30General theory of meromorphic functions
39A05General theory of difference equations
[1]Ablowitz, M.J., Halburd, R., Herbst, B.: On the extension of the Painlevé property to difference equations. Nonlinearity 13, 889–905 (2000) · Zbl 0956.39003 · doi:10.1088/0951-7715/13/3/321
[2]Ablowitz, M.J., Clarkson, P.A.: Soliton, Nonlinear Evolution Equations and Inverse Scattering. London Mathematical Society Lecture Note Series, vol. 149. Cambridge University Press, Cambridge (1991)
[3]Bergweiler, W., Hayman, W.K.: Zeros of solutions of a functional equation. Comput. Methods Funct. Theory 3(1–2), 55–78 (2003)
[4]Bergweiler, W., Ishizaki, K., Yanagihara, N.: Meromorphic solutions of some functional equations. Methods Appl. Anal. 5(3), 248–258 (1998)
[5]Bergweiler, W., Ishizaki, K., Yanagihara, N.: Growth of meromorphic solutions of some functional equations, I. Aequ. Math. 63, 140–151 (2002) · Zbl 1009.39022 · doi:10.1007/s00010-002-8012-x
[6]Bergweiler, W., Langley, J.K.: Zeros of differences of meromorphic functions. Math. Proc. Camb. Philos. Soc. 142(1), 133–147 (2007) · Zbl 1114.30028 · doi:10.1017/S0305004106009777
[7]Cartan, H.: Sur les systémes de fonctions holomorphes á variétérs linéaires lacunaires et leurs applications. Ann. Sci. Ec. Norm. Super. 45(3), 255–346 (1928)
[8]Chiang, Y.M., Ruijsenaars, S.N.M.: On the Nevanlinna order of meromorphic solutions to linear analytic difference equations. Stud. Appl. Math. 116, 257–287 (2006) · Zbl 1145.39300 · doi:10.1111/j.1467-9590.2006.00343.x
[9]Conte, R., Mussette, M.: A new method to test discrete Painlevé equations. Phys. Lett. A 223, 439–448 (1996) · Zbl 1037.39500 · doi:10.1016/S0375-9601(96)00783-9
[10]Gol’dberg, A.A., Ostrovskii, I.V.: The Distribution of Values of Meromorphic Functions. Nauka, Moscow (1970) (in Russian)
[11]Grammaticos, B., Ramani, A., Papageorgiou, V.: Do integrable mappings have the Painlevé property? Phys. Rev. Lett. 67, 1825–1828 (1991) · Zbl 0990.37518 · doi:10.1103/PhysRevLett.67.1825
[12]Gromak, V.I., Laine, I., Shimomura, S.: Painlevé Differential Equations in the Complex Plane. de Gruyter Studies in Mathematics, vol. 28. de Gruyter, Berlin (2002)
[13]Gundersen, G.G.: Estimates for the logarithmic derivative of meromorphic functions, plus similar estimates. J. Lond. Math. Soc. 37, 88–104 (1988) · Zbl 0638.30030 · doi:10.1112/jlms/s2-37.121.88
[14]Gundersen, G.G.: Finite order solutions of second order linear differential equations. Trans. Am. Math. Soc. 305(1), 415–429 (1988) · doi:10.1090/S0002-9947-1988-0920167-5
[15]Halburd, R.G., Korhonen, R.J.: Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. J. Math. Anal. Appl. 314, 477–487 (2006) · Zbl 1085.30026 · doi:10.1016/j.jmaa.2005.04.010
[16]Halburd, R.G., Korhonen, R.J.: Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn. Math. 31(2), 463–478 (2006)
[17]Halburd, R.G., Korhonen, R.J.: Finite-order meromorphic solutions and the discrete Painlevé equations. Proc. Lond. Math. Soc. 94(3), 443–474 (2007) · Zbl 1119.39014 · doi:10.1112/plms/pdl012
[18]Hayman, W.K.: Meromorphic Functions. Clarendon, Oxford (1964) (reprinted with Appendix, 1975)
[19]Hayman, W.K.: The growth of solutions of algebraic differential equations. Rend. Mat. Acc. Lincei 9(2), 67–73 (1996)
[20]Hayman, W.K., Thatcher, A.R.: A functional equation arising from the mortality tables. In: Baker, A., Bollobás, B., Hajnal, A. (eds.) A Tribute to Paul Erdös, pp. 259–275. Cambridge University Press, Cambridge (1990)
[21]He, Y., Xiao, X.: Algebroid Functions and Ordinary Differential Equations. Science Press, Beijing (1988) (in Chinese)
[22]Heittokangas, J., Korhonen, R., Laine, I., Rieppo, J., Tohge, K.: Complex difference equations of Malmquist type. Comput. Methods Funct. Theory 1, 27–39 (2001)
[23]Heittokangas, J., Laine, I., Rieppo, J., Yang, D.: Meromorphic solutions of some linear functional equations. Aequ. Math. 60, 148–166 (2000) · Zbl 0963.39028 · doi:10.1007/s000100050143
[24]Hille, E.: Ordinary Differential Equations in the Complex Domain. Wiley, New York (1976)
[25]Hinkkanen, A.: A sharp form of Nevanlinna’s second fundamental theorem. Invent. Math. 108, 549–574 (1992) · Zbl 0766.30025 · doi:10.1007/BF02100617
[26]Ishizaki, K., Yanagihara, N.: Wiman–Valiron method for difference equations. Nagoya Math. J. 175, 75–102 (2004)
[27]Jank, G., Volkmann, L.: Einführung in die Theorie der ganzen und meromorphen Funcktionen mit Anwendungen auf Differentialgleichungen. Birkhäuser, Basel (1985)
[28]Laine, I.: Nevanlinna Theory and Complex Differential Equations. de Gruyter, Berlin (1993)
[29]Lang, S.: The error term in Nevanlinna theory. Duke Math. J. 56, 193–218 (1988) · Zbl 0659.32005 · doi:10.1215/S0012-7094-88-05609-8
[30]Levin, B.J.: Distribution of Zeros of Entire Functions. Translation of Mathematical Monographs, vol. 5. American Mathematical Society, Providence (1980)
[31]Mohon’ko, A.Z.: The Nevanlinna characteristics of certain meromorphic functions. Teor. Funkc. Funkc. Anal. ih Priloz. 14, 83–87 (1971) (in Russian)
[32]Nevanlinna, R.: Analytic Functions. Springer, Berlin (1970)
[33]Ramani, A., Grammaticos, B., Hietarinta, J.: Discrete versions of the Painlevé equations. Phys. Rev. Lett. 67, 1829–1832 (1991) · Zbl 1050.39500 · doi:10.1103/PhysRevLett.67.1829
[34]Ramani, A., Grammaticos, B., Tamizhmani, T., Tamizhmani, K.M.: The road to the discrete analogue of the Painlevé property: Nevanlinna meets Singularity confinement. Comput. Math. Appl. 45, 1001–1012 (2003) · Zbl 1057.39018 · doi:10.1016/S0898-1221(03)00076-2
[35]Ramis, J.-P.: About the growth of entire function solutions of linear algebraic q-difference equations. Ann. Fac. Sci. Toulouse Math. (6) 1(1), 53–94 (1992)
[36]Ruijsenaars, S.N.M.: First order analytic difference equations and integrable quantum systems. J. Math. Phys. 40, 1069–1146 (1997) · Zbl 0877.39002 · doi:10.1063/1.531809
[37]Shimomura, S.: Entire solutions of a polynomial difference equation. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28, 253–266 (1981)
[38]Titchmarsh, E.C.: The Theory of Functions, 2nd edn. Oxford University Press, London (1991)
[39]Whittaker, J.M.: Interpolatory Function Theory. Cambridge University Press, Cambridge (1935)
[40]Yanagihara, N.: Meromorphic solutions of some difference equations. Funkc. Ekvacioj. 23, 309–326 (1980)