zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Ekeland’s variational principle and its equivalent theorems in vector optimization. (English) Zbl 1152.49016
Summary: We present a simple proof of vectorial Ekeland’s variational principle, vectorial Caristi’s fixed point theorem and vectorial Takahashi’s nonconvex minimization theorem. Equivalences between the three theorems are also given.

49J53Set-valued and variational analysis
47H10Fixed point theorems for nonlinear operators on topological linear spaces
49J27Optimal control problems in abstract spaces (existence)
[1]Aubin, J. P.: Optima and equilibria. An introduction to nonlinear analysis, (1993) · Zbl 0781.90012
[2]Brezis, H.; Browder, F. E.: A general principle on ordered sets in nonlinear functional analysis, Adv. math. 21, 355-364 (1976) · Zbl 0339.47030 · doi:10.1016/S0001-8708(76)80004-7
[3]Caristi, J.: Fixed point theorems for mapping satisfying inwardness conditions, Trans. amer. Math. soc. 215, 241-251 (1976) · Zbl 0305.47029 · doi:10.2307/1999724
[4]Ekeland, I.: On the variational principle, J. math. Anal. appl. 47, 324-354 (1974) · Zbl 0286.49015 · doi:10.1016/0022-247X(74)90025-0
[5]Gopfert, A.; Riahi, H.; Tammer, C.; Zalinescu, C.: Variational methods in partially ordered spaces, (2003)
[6]Gopfert, A.; Tammer, C.; Zalinescu, C.: On the vectorial Ekeland’s variational principle and minimal points in product spaces, Nonlinear anal. 39, 909-922 (2000) · Zbl 0997.49019 · doi:10.1016/S0362-546X(98)00255-7
[7]Isac, G.: The Ekeland’s principle and the Pareto &z.epsiv;-efficiency, Lecture notes in econom. And math. Systems 432, 148-163 (1996)
[8]Jahn, J.: Vector optimization: theory, applications, and extensions, (2004)
[9]Loridan, P.: &z.epsiv;-solutions in vector minimization problems, J. optim. Theory appl. 43, 265-276 (1984)
[10]Phelps, R. R.: Convex function, monotone operators and differentiability, Lecture notes in math. 1364 (1993) · Zbl 0921.46039
[11]Mizoguchi, N.; Takahashi, W.: Fixed point theorems for multivalued mappings on complete metric spaces, J. math. Anal. appl. 141, 177-188 (1989) · Zbl 0688.54028 · doi:10.1016/0022-247X(89)90214-X
[12]Takahashi, W.: Existence theorems generalizing fixed point theorems for multivalued mappings, Pitman res. Notes math. Ser. 252, 397-406 (1991) · Zbl 0760.47029
[13]Tammer, C.: A generalization of Ekeland’s principle, Optimization 25, 129-141 (1992) · Zbl 0817.90098 · doi:10.1080/02331939208843815
[14]Tammer, C.: A variational principle and a fixed point theorem, Lecture notes in control and inform. Sci. 197, 248-257 (1994) · Zbl 0814.49005