zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Mean square exponential stability of stochastic recurrent neural networks with time-varying delays. (English) Zbl 1152.60346
Summary: The stability of a class of stochastic Recurrent Neural Networks with time-varying delays is investigated in this paper. With the help of the Lyapunov function and the Dini derivative of the expectation of V(t,X(t)) “along” the solution X(t) of the model, a set of novel sufficient conditions on mean square exponential stability has been established. An example is also given to illustrate the effectiveness of our results.
MSC:
60K20Applications of Markov renewal processes
62M45Neural nets and related approaches (inference from stochastic processes)
References:
[1]Roska, T.; Chua, L. O.: Cellular neural networks with nonlinear and delay-type template, Int. J. Circuit theory appl. 20, 469-481 (1992) · Zbl 0775.92011 · doi:10.1002/cta.4490200504
[2]Venetianer, P.; Roska, T.: Image compression by delayed cnns, IEEE trans. Circuits syst. I 45, 205-215 (1998)
[3]Chen, T.: Global exponential stability of delayed Hopfield neural networks, Neural netw. 14, 977-980 (2001)
[4]Cao, J.; Wang, L.: Exponential stability and periodic oscillatory solution in BAM networks with delays, IEEE trans. Neural netw. 13, 457-463 (2002)
[5]Chen, A.; Cao, J.: Periodic bi-directional Cohen–Grossberg neural networks with distributed delays, Nonlinear anal. 66, 2947-2961 (2007) · Zbl 1122.34055 · doi:10.1016/j.na.2006.04.016
[6]Liu, Z.; Chen, A.; Cao, J.; Huang, L.: Existence and global exponential stability of periodic solution for BAM neural networks with periodic coefficients and time-varying delays, IEEE trans. Circuits syst.-I 50, 1162-1173 (2003)
[7]Cao, J.; Chen, T.: Globally exponentially robust stability and periodicity of delayed neural networks, Chaos, solitons fractals 4, 957-963 (2004) · Zbl 1061.94552 · doi:10.1016/j.chaos.2004.03.019
[8]Wei, J.; Yuan, Y.: Synchronized Hopf bifurcation analysis in a neural network model with delays, J. math. Anal. appl. 312, 205-229 (2005) · Zbl 1085.34058 · doi:10.1016/j.jmaa.2005.03.049
[9]Liao, X.; Liu, Q.; Zhang, W.: Delay-dependent asymptotic stability for neural networks with distributed delays, Nonlinear anal.: RWA 7, 1178-1192 (2006) · Zbl 1194.34140 · doi:10.1016/j.nonrwa.2005.11.001
[10]Huang, C.; Huang, L.; Yuan, Z.: Dynamics of a class of Cohen–Grossberg neural networks with time-varying delays, Nonlinear anal.: RWA 8, 40-52 (2007) · Zbl 1123.34053 · doi:10.1016/j.nonrwa.2005.04.008
[11]Haykin, S.: Neural networks, (1994)
[12]Liao, X.; Mao, X.: Exponential stability and instability of stochastic neural networks, Stoch. anal. Appl 14, 165-185 (1996) · Zbl 0848.60058 · doi:10.1080/07362999608809432
[13]Liao, X.; Mao, X.: Stability of stochastic neural networks, Neural. parallel sci. Comput 14, 205-224 (1996) · Zbl 1060.92502
[14]Wan, L.; Sun, J.: Mean square exponential stability of delayed Hopfield neural networks, Phys. lett. A 343, 306-318 (2005) · Zbl 1194.37186 · doi:10.1016/j.physleta.2005.06.024
[15]Hu, J.; Zhong, S.; Liang, L.: Exponential stability analysis of stochastic delayed cellular neural network, Chaos, solitions fractals 27, 1006-1010 (2006) · Zbl 1084.68099 · doi:10.1016/j.chaos.2005.04.067
[16]Zhao, H.; Ding, N.: Dynamic analysis of stochastic Cohen–Grossberg neural networks with time delays, Appl. math. Comput. 183, 464-470 (2006) · Zbl 1117.34080 · doi:10.1016/j.amc.2006.05.087
[17]Mao, X.: Stochastic differential equation and application, (1997)