zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A foundation of rough sets theoretical and computational hybrid intelligent system for survival analysis. (English) Zbl 1152.68571

Summary: What do we (not) know about the association between diabetes and survival time? Our study offers an alternative mathematical framework based on rough sets to analyze medical data and provide epidemiology survival analysis with risk factor diabetes. We experiment on three data sets: geriatric, melanoma and Primary Biliary Cirrhosis. A case study reports from 8547 geriatric Canadian patients at the Dalhousie Medical School. Notification status (dead or alive) is treated as the censor attribute and the time lived is treated as the survival time.

The analysis result illustrates diabetes is a very significant risk factor to survival time in our geriatric patients data. This paper offers both theoretical and practical guidelines in the construction of a rough sets hybrid intelligent system, for the analysis of real world data. Furthermore, we discuss the potential of rough sets, artificial neural networks (ANNs) and frailty index in predicting survival tendency.

MSC:
68T20AI problem solving (heuristics, search strategies, etc.)
03E72Fuzzy set theory
92C50Medical applications of mathematical biology
68T37Reasoning under uncertainty
References:
[1]Elisa, L. T.; John, W. W.: Statistical methods for survival data analysis, (2003) · Zbl 1026.62103
[2]Cohen, I.; Garg, A.; Huang, T. S.; Sebe, N.: Machine learning in computer version, (2005)
[3]Johnson, R. A.; Wichern, D. W.: Applied multivariate statistical analysis, (2002)
[4]Larry, M. R.: Hybrid intelligent system, (1995)
[5]Russell, S. J.; Norvig, P.: Artificial intelligence: A modern approach, (2002)
[6]Zdzislaw, P.: Rough sets, Int. J. Inf. comput. Sci. 11, No. 5, 341-356 (1982)
[7]Zdzislaw, P.: Rough sets. Theoretical aspects of reasoning about data, (1991) · Zbl 0758.68054
[8]Pawlak, Z.; Skowron, A.: Rudiments of rough sets, Inform. sciences 177, No. 1, 3-27 (2007) · Zbl 1142.68549 · doi:10.1016/j.ins.2006.06.003
[9]Pawlak, Z.; Skowron, A.: Rough sets: some extensions, Inform. sciences 177, No. 1, 28-40 (2007) · Zbl 1142.68550 · doi:10.1016/j.ins.2006.06.006
[10]Pawlak, Z.; Skowron, A.: Rough sets and Boolean reasoning, Inform. sciences 177, No. 1, 41-73 (2007) · Zbl 1142.68551 · doi:10.1016/j.ins.2006.06.007
[11]O. Alexander, Discernibility and Rough Sets in Medicine: Tools and Applications, Dissertation, Norwegian University of Science and Technology, Norway, 1999
[12]Komorowski, J.; Polkowski, L.; Skowron, A.: Rough sets: A tutorial, Rough fuzzy hybridization: A new trend in decision-making, 3-98 (1998)
[13], Lect. notes comp. Sci. 4374 (2007)
[14], Lect. notes comp. Sci. 4400 (2007)
[15]Pattaraintakorn, P.; Cercone, N.; Naruedomkul, K.: Hybrid intelligent systems: selecting attributes for soft-computing analysis, , 319-325 (2005)
[16]Pattaraintakorn, P.; Cercone, N.; Naruedomkul, K.: Selecting attributes for soft–computing analysis in hybrid intelligent systems, Lect. notes. Artif. int. 3642, 698-708 (2005)
[17]Pattaraintakorn, P.; Cercone, N.; Naruedomkul, K.: Rule learning: ordinal prediction based on rough set and soft-computing, Appl. math. Lett. 19, No. 12, 1300-1307 (2006) · Zbl 1138.68495 · doi:10.1016/j.aml.2005.08.004
[18]Pattaraintakorn, P.; Cercone, N.: Hybrid rough sets-population based system, Lect. notes comp. Sci. 4400, 190-205 (2007)
[19]Pattaraintakorn, P.; Cercone, N.; Naruedomkul, K.: Hybrid rough sets intelligent system architecture for survival analysis, Lect. notes comp. Sci. 4400, 206-224 (2007)
[20]Pattaraintakorn, P.; Cercone, N.: Integrating rough set theory and medical applications, Appl. math. Lett. 21, No. 4, 400-403 (2008)
[21]Pattaraintakorn, P.; Zaverucha, G. M.; Cercone, N.: Web based health recommender system using rough sets, survival analysis and rule-based expert systems, Lect. notes. Artif. int. 4482, 491-499 (2007)
[22]Mckee, T. E.; Lensberg, T.: Genetic programming and rough sets: A hybrid approach to bankruptcy classification, Eur. J. Oper. res. 138, 436-451 (2002) · Zbl 1131.90465 · doi:10.1016/S0377-2217(01)00130-8
[23]C. Blake, E. Keogh, C. Merz, UCI Repository of Machine Learning Databases, http://www.ics.uci.edu, University of California, 2005
[24]S.H. Nguyen, H.S. Nguyen, Some efficient algorithms for rough set methods, in: Proceedings of the Sixth International Conference on Information Processing and Management of Uncertainty Knowledge Based Systems, Granada, Spain, 1996, pp. 1451–1456
[25]Hu, X.; Lin, T. Y.; Han, J.: A new rough sets models based on database systems, Fund. inform. 59, No. 2–3, 1-18 (2004) · Zbl 1098.68127
[26]An, A.; Cercone, N.: ELEM2: A learning system for more accurate classifications, Lect. notes. Artif. int. 1418, 426-441 (1998)
[27]Quinlan, J. R.: Induction of decision trees, Mach learn. 1, 81-106 (1986)
[28]Witten, I.; Frank, E.: Practical machine learning tools and techniques with Java implementations, (2000)
[29]Swiniarski, R.; Skowron, A.: Rough set methods in feature selection and recognition, Pattern recogn. Lett. 24, No. 6, 833-849 (2003) · Zbl 1053.68093 · doi:10.1016/S0167-8655(02)00196-4
[30]Hu, X.; Cercone, N.: Discovery of decision rules in relational databases: A rough set approach, , 392-400 (1994)
[31]Skowron, A.; Rauszer, C.: The discernibility matrices and functions in information systems, Intelligent decision suppport - handbook of applications and advances of the rough sets theory, 331-362 (1992)
[32]Nguyen, H. S.: Approximate Boolean reasoning approach to rough sets and data mining, Lect. notes. Artif. int. 3642, 12-22 (2005) · Zbl 1155.68532 · doi:10.1007/11548706
[33]Bazan, J.; Skowron, A.; Slezak, D.; Wroblewski, J.: Searching for the complex decision reducts: the case study of the survival analysis, Lect. notes. Artif. int. 2871, 160-168 (2003) · Zbl 1070.68636
[34]Song, X.; Mitnitski, A.; Macknight, C.; Rockwood, K.: Assessment of individual risk of death using self-report data: an artificial neural network compared to a frailty index, J. am. Geriatr. soc. 52, 1180-1184 (2004)