zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Meshless methods: a review and computer implementation aspects. (English) Zbl 1152.74055

Summary: The aim is to give a practical overview of meshless methods (for solid mechanics) based on global weak forms through a simple and well-structured MATLAB code, to illustrate our discourse. The source code is available for download on our website

(www.civil.gla.ac.uk/~bordas)

and should help students and researchers get started with some of the basic meshless methods; it includes intrinsic and extrinsic enrichment, point collocation methods, several boundary condition enforcement schemes and the corresponding test cases. Several one and two-dimensional examples in elastostatics are given including weak and strong discontinuities and testing different ways of enforcing essential boundary conditions.

MSC:
74S30Other numerical methods in solid mechanics
74-02Research monographs (mechanics of deformable solids)
74-04Machine computation, programs (mechanics of deformable solids)
Software:
Matlab
References:
[1]Atluri, S. N.: The meshless local Petrov – Galerkin (MLPG) method, (2002) · Zbl 1012.65116
[2]Atluri, S. N.; Shen, S.: The meshless local Petrov – Galerkin (MLPG) method: a simple and less-costly alternative to the finite element and boundary element methods, Comput. model eng. Sci. 3, 11-51 (2002) · Zbl 0996.65116
[3]Atluri, S. N.; Zhu, T.: A new meshless local Petrov – Galerkin (MLPG) approach in computational mechanics, Comput. mech. 22, 117-127 (1998) · Zbl 0932.76067 · doi:10.1007/s004660050346
[4]Atluri, S. N.; Zhu, T.: The meshless local Petrov – Galerkin (MLPG) approach for solving problems in elasto-statics, Comput. mech. 25, 169-179 (2000) · Zbl 0976.74078 · doi:10.1007/s004660050467
[5]Beissel, S.; Belytschko, T.: Nodal integration of the element-free Galerkin method, Comput. methods appl. Mech. eng. 139, 49-74 (1996) · Zbl 0918.73329 · doi:10.1016/S0045-7825(96)01079-1
[6]Belytschko, T.; Black, T.: Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. methods eng. 45, 601-620 (1999) · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[7]Belytschko, T.; Fleming, M.; Organ, D.; Krongauz, Y.; Liu, W. K.: Smoothing and accelerated computations in the element free Galerkin method, J. comput. Appl. math. 74, 111-126 (1996) · Zbl 0862.73058 · doi:10.1016/0377-0427(96)00020-9
[8]Belytschko, T.; Gu, L.; Lu, Y. Y.: Fracture and crack growth by element-free Galerkin methods, Model. simul. Mater. sci. Eng. 2, 519-534 (1994)
[9]Belytschko, T.; Guo, Y.; Liu, W. K.; Xiao, S. P.: A unified stability analysis of meshfree particle methods, Int. J. Numer. methods eng. 48, 1359-1400 (2000) · Zbl 0972.74078 · doi:10.1002/1097-0207(20000730)48:9<1359::AID-NME829>3.0.CO;2-U
[10]Belytschko, T.; Krongauz, Y.; Dolbow, J.; Gerlach, C.: On the completeness of meshfree particle methods, Int. J. Numer. methods eng. 43, 785-819 (1998) · Zbl 0939.74076 · doi:10.1002/(SICI)1097-0207(19981115)43:5<785::AID-NME420>3.0.CO;2-9
[11]Belytschko, T.; Krongauz, Y.; Fleming, M.; Organ, D.; Liu, W. K.: Smoothing and accelerated computations in the element-free Galerkin method, J. comput. Appl. math. 74, 111-126 (1996) · Zbl 0862.73058 · doi:10.1016/0377-0427(96)00020-9
[12]Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P.: Meshless methods: an overview and recent developments, Comput. methods appl. Mech. eng. 139, 3-47 (1996) · Zbl 0891.73075 · doi:10.1016/S0045-7825(96)01078-X
[13]Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P.: Meshless methods: an overview and recent developments, Comput. methods appl. Mech. eng. 139, 3-47 (1996) · Zbl 0891.73075 · doi:10.1016/S0045-7825(96)01078-X
[14]Belytschko, T.; Lu, Y. Y.; Gu, L.: Element-free Galerkin methods, Int. J. Numer. methods eng. 37, 229-256 (1994) · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[15]Belytschko, T.; Lu, Y. Y.; Gu, L.: Crack propagation by element-free Galerkin methods, Eng. fract. Mech. 51, No. 2, 295-315 (1995)
[16]Belytschko, T.; Lu, Y. Y.: Element-free Galerkin methods for static and dynamic fracture, Int. J. Solids struct. 32, 2547-2570 (1995) · Zbl 0918.73268 · doi:10.1016/0020-7683(94)00282-2
[17]Belytschko, T.; Lu, Y. Y.; Gu, L.: Element-free Galerkin methods, Int. J. Numer. methods eng. 37, 229-256 (1994) · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[18]Belytschko, T.; Organ, D.; Krongauz, Y.: A coupled finite element – element-free Galerkin method, Comput. mech. 17, No. 3, 186-195 (1995) · Zbl 0840.73058 · doi:10.1007/BF00364080
[19]Belytschko, T.; Tabbara, M.: Dynamic fracture using element-free Galerkin methods, Int. J. Numer. methods eng. 39, No. 6, 923-938 (1996) · Zbl 0953.74077 · doi:10.1002/(SICI)1097-0207(19960330)39:6<923::AID-NME887>3.0.CO;2-W
[20]Bonet, J.; Kulasegaram, S.: Correction and stabilization of smooth particle hydrodynamics methods with application in metal forming simulations, Int. J. Numer. methods eng. 47, No. 6, 1189-1214 (2000) · Zbl 0964.76071 · doi:10.1002/(SICI)1097-0207(20000228)47:6<1189::AID-NME830>3.0.CO;2-I
[21]Bonet, J.; Lok, T.: Variational and momentum preservation aspects of smooth particle hydrodynamic formulations., Comput. methods appl. Mech. eng. 180, No. 1 – 2, 97-115 (1999) · Zbl 0962.76075 · doi:10.1016/S0045-7825(99)00051-1
[22]Bordas, S.; Conley, J. G.; Moran, B.; Gray, J.; Nichols, E.: A simulation-based design paradigm for complex cast components, Eng. comput. 23, No. 1, 25-37 (2007)
[23]Bordas, S.; Moran, B.: Enriched finite elements and level sets for damage tolerance assessment of complex structures, Eng. fract. Mech. 73, 1176-1201 (2006)
[24]S. Bordas, V.P. Nguyen, C. Dunant, H. Nguyen-Dang, A. Guidoum, An extended finite element library, Int. J. Numer. Methods Eng. 71 (2008) 703 – 732.
[25]Carpinteri, A.: Post-peak and post-bifurcation analysis of cohesive crack propagation, Eng. fract. Mech. 32, 265-278 (1989)
[26]Carpinteri, A.: A scale-invariant cohesive crack model for quasi-brittle materials, Eng. fract. Mech. 69, 207-217 (2002)
[27]Carpinteri, A.; Ferro, G.; Ventura, G.: The partition of unity quadrature in meshless methods, Int. J. Numer. methods eng. 54, 987-1006 (2002) · Zbl 1028.74047 · doi:10.1002/nme.455
[28]Carpinteri, A.; Ferro, G.; Ventura, G.: The partition of unity quadrature in element-free crack modelling, Comput. struct. 81, 1783-1794 (2003)
[29]Chen, J. S.; Pan, C.; Rogue, C. M. O.L.; Wang, H. P.: A Lagrangian reproducing kernel particle method for metal forming analysis, Comput. mech. 22, 289-307 (1998) · Zbl 0928.74115 · doi:10.1007/s004660050361
[30]Chen, J. S.; Pan, C.; Wu, C. T.; Liu, W. K.: Reproducing kernel particle methods for large deformation analysis of nonlinear structures, Comput. methods appl. Mech. eng. 139, 195-227 (1996) · Zbl 0918.73330 · doi:10.1016/S0045-7825(96)01083-3
[31]Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y.: A stabilized conforming nodal integration for Galerkin meshfree-methods, Int. J. Numer. methods eng. 50, 435-466 (2001) · Zbl 1011.74081 · doi:10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
[32]Chung, H. J.; Belytschko, T.: An error estimate in the EFG method, Comput. mech. 21, 91-100 (1998) · Zbl 0910.73060 · doi:10.1007/s004660050286
[33]Chung, H. J.; Lee, G. H.; Choi, C. K.: Adaptive nodal generation with the element-free Galerkin method, Struct. eng. Mech. 10, 635-650 (2000)
[34]Cueto-Felgueroso, L.; Colominas, I.; Mosqueira, G.; Navarrina, F.; Casteleiro, M.: On the Galerkin formulation of smoothed particle hydrodynamics, Int. J. Numer. methods eng. 60, 1475-1512 (2004) · Zbl 1060.76638 · doi:10.1002/nme.1011
[35]Dilts, G. A.: Moving least square particle hydrodynamics. I. consistency and stability, Int. J. Numer. methods eng. 44, 1115-1155 (2000) · Zbl 0951.76074 · doi:10.1002/(SICI)1097-0207(19990320)44:8<1115::AID-NME547>3.0.CO;2-L
[36]Dilts, G. A.: Moving least square particle hydrodynamics. II. conservation and boundaries, Int. J. Numer. methods eng., 1503-1524 (2000) · Zbl 0960.76068 · doi:10.1002/1097-0207(20000810)48:10<1503::AID-NME832>3.0.CO;2-D
[37]Dolbow, J.; Belytschko, T.: An introduction to programming the meshless element-free Galerkin method, Arch. comput. Mech. 5, No. 3, 207-241 (1998)
[38]Dolbow, J.; Belytschko, T.: Numerical integration of the Galerkin weak form in meshfree methods, Comput. mech. 23, 219-230 (1999) · Zbl 0963.74076 · doi:10.1007/s004660050403
[39]Duarte, C. A.; Oden, J. T.: An hp adaptive method using clouds, Comput. methods appl. Mech. eng. 139, 237-262 (1996) · Zbl 0918.73328 · doi:10.1016/S0045-7825(96)01085-7
[40]Duarte, C. A.; Oden, J. T.: Hp clouds – an hp meshless method, Numerical methods for partial differential equations 12, 673-705 (1996) · Zbl 0869.65069 · doi:10.1002/(SICI)1098-2426(199611)12:6<673::AID-NUM3>3.0.CO;2-P
[41]Duflot, M.: A meshless method with enriched weight functions for three-dimensional crack propagation, Int. J. Numer. methods eng. 65, 1970-2006 (2006) · Zbl 1114.74064 · doi:10.1002/nme.1530
[42]Duflot, M.; Nguyen-Dang, H.: Dual analysis by a meshless method, Commun. numer. Methods eng. 18, 621-631 (2002) · Zbl 1073.74641 · doi:10.1002/cnm.521
[43]Duflot, M.; Nguyen-Dang, H.: A truly meshless method based on a moving least squares quadrature, Commun. numer. Methods eng. 18, 441-449 (2002) · Zbl 1008.74082 · doi:10.1002/cnm.503
[44]Duflot, M.; Nguyen-Dang, H.: A meshless method with enriched weight functions for fatigue crack growth, Int. J. Numer. methods eng. 59, 1945-1961 (2004) · Zbl 1060.74664 · doi:10.1002/nme.948
[45]Dunant, C.; Nguyen, P.; Belgasmia, M.; Bordas, S.; Guidoum, A.; Nguyen-Dang, H.: Architecture trade-offs of including a mesher in an object-oriented extended finite element code, Eur. J. Comput. mech., No. 16, 237-258 (2007)
[46]Dyka, C. T.; Ingel, R. P.: An approach for tensile instability in smoothed particle hydrodynamics, Comput. struct. 57, 573-580 (1995) · Zbl 0900.73945 · doi:10.1016/0045-7949(95)00059-P
[47]S. Fernández-Méndez, P. Díez, A. Huerta, Convergence of finite elements enriched with meshless methods, Numer. Math. 96 (2003) 43 – 59. · Zbl 1049.65117 · doi:10.1007/s00211-003-0465-x
[48]S. Fernández-Méndez, A. Huerta, Imposing essential boundary conditions in mesh-free methods, Comput. Methods Appl. Mech. Eng. 193 (2004) 1257 – 1275. · Zbl 1060.74665 · doi:10.1016/j.cma.2003.12.019
[49]S. Fernández-Méndez, A. Huerta, Coupling finite elements and particles for adaptivity: an application to consistently stabilized convection – diffusion, in: M. Griebel, M.A. Schweitzer (Eds.), Meshfree Methods for Partial Differential Equations, Lecture Notes in Computational Science and Engineering, vol. 26, Springer-Verlag, Berlin, 2002, pp. 117 – 129 (Papers from the International Workshop, Universität Bonn, Germany, September 11 – 14, 2001). · Zbl 1012.65120
[50]Fleming, M.; Chu, Y. A.; Moran, B.; Belytschko, T.: Enriched element-free Galerkin methods for crack tip fields, Int. J. Numer. methods eng. 40, 1483-1504 (1997)
[51]Gavete, L.; Cuesta, J. L.; Ruiz, A.: A procedure for approximation of the error in the EFG method, Int. J. Numer. methods eng. 53, 677-690 (2002) · Zbl 1112.74564 · doi:10.1002/nme.307
[52]Gavete, L.; Falcën, S.; Ruiz, A.: An error indicator for the element-free Galerkin method, Eur. J. Mech. A/solids 20, 327-341 (2001) · Zbl 1047.74080 · doi:10.1016/S0997-7538(00)01132-3
[53]Gavete, L.; Gavete, M. L.; Alonso, B.; Martën, A. J.: A posteriori error approximation in EFG method, Int. J. Numer. methods eng. 58, 2239-2263 (2003) · Zbl 1047.74081 · doi:10.1002/nme.850
[54]Gingold, R. A.; Monaghan, J. J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars, Monthly notices R. Astron. soc. 181, 375-389 (1977) · Zbl 0421.76032
[55]S. Hao, W.K. Liu, Moving particle finite element method with superconvergence: nodal integration formulation and applications, Comput. Methods Appl. Mech. Eng. 195 (2006) 6059 – 6072. · Zbl 1120.74051 · doi:10.1016/j.cma.2005.10.030
[56]Huerta, A.; Fernández-Méndez, S.: Enrichment and coupling of the finite element and meshless methods, Int. J. Numer. methods eng. 48, No. 11, 1615-1636 (2000) · Zbl 0976.74067 · doi:10.1002/1097-0207(20000820)48:11<1615::AID-NME883>3.0.CO;2-S
[57]Huerta, A.; Belytschko, T.; Fernandez-Mendez, S.; Rabczuk, T.: Encyclopedia of comput. Mech., (2004)
[58]A. Huerta, S. Fernández-Méndez, W.K. Liu, A comparison of two formulations to blend finite elements and mesh-free methods, Comput. Methods Appl. Mech. Eng. 193 (2004) 1105 – 1117. · Zbl 1059.65104 · doi:10.1016/j.cma.2003.12.009
[59]Hëussler-Combe, U.; Korn, C.: An adaptive approach with the element-free Galerkin method, Comput. methods appl. Mech. eng. 162, 203-222 (1998) · Zbl 0945.74077 · doi:10.1016/S0045-7825(97)00344-7
[60]Idelsohn, S. R.; Oñate, E.; Del Pin, F.: The particle finite element method: a powerful tool to solve incompressible flows with free surfaces and breaking waves, Int. J. Numer. methods eng. 61, 964-989 (2004) · Zbl 1075.76576 · doi:10.1002/nme.1096
[61]Johnson, G. R.; Beissel, S. R.: Normalized smoothing functions for sph impact computations, Int. J. Numer. methods eng. 39, 2725-2741 (1996) · Zbl 0880.73076 · doi:10.1002/(SICI)1097-0207(19960830)39:16<2725::AID-NME973>3.0.CO;2-9
[62]Johnson, G. R.; Beissel, S. R.; Stryk, R. A.: A generalized particle algorithm for high velocity impact computations, Comput. mech. 25, 245-256 (2000) · Zbl 0969.74076 · doi:10.1007/s004660050473
[63]Krongauz, Y.; Belytschko, T.: EFG approximation with discontinuous derivatives, Int. J. Numer. methods eng. 41, 1215-1233 (1998) · Zbl 0906.73063 · doi:10.1002/(SICI)1097-0207(19980415)41:7<1215::AID-NME330>3.0.CO;2-#
[64]Krongauz, Y.; Belytschko, T.: EFG approximation with discontinuous derivatives, Int. J. Numer. methods eng. 41, No. 7, 1215-1233 (1998) · Zbl 0906.73063 · doi:10.1002/(SICI)1097-0207(19980415)41:7<1215::AID-NME330>3.0.CO;2-#
[65]Lancaster, P.; Salkauskas, K.: Surfaces generated by moving least squares methods, Math. comput. 37, 141-158 (1981) · Zbl 0469.41005 · doi:10.2307/2007507
[66]Laouar, T.; Villon, P.: Adaptive analysis for the diffuse element method, Comput. mech. (1998)
[67]Lee, C. K.; Zhou, C. E.: On error estimation and adaptive refinement for element free Galerkin method. Part I. Stress recovery and a posteriori error estimation, Comput. struct. 82, 413-428 (2004)
[68]Lee, C. K.; Zhou, C. E.: On error estimation and adaptive refinement for element free Galerkin method. Part II. Adaptive refinement, Comput. struct. 82, 429-443 (2004)
[69]Lee, G. H.; Chung, H. J.; Choi, C. K.: Adaptive crack propagation analysis with the element-free Galerkin method, Int. J. Numer. methods eng. 56, 331-350 (2003) · Zbl 1022.74037 · doi:10.1002/nme.564
[70]Li, Q.; Soric, J.; Jarak, T.; Atluri, S. N.: A locking-free meshless local Petrov – Galerkin formulation for thick and thin plates, J. comput. Phys. 208, 116-133 (2005) · Zbl 1115.74369 · doi:10.1016/j.jcp.2005.02.008
[71]Libersky, L. D.; Petscheck, A. G.; Carney, T. C.; Hipp, J. R.; Allahdadi, F. A.: High strain Lagrangian hydrodynamics, J. comput. Phys. 109, 67-75 (1993) · Zbl 0791.76065 · doi:10.1006/jcph.1993.1199
[72]Liszka, T. J.; Duarte, C. A.; Tworzydlo, W. W.: Hp-meshless cloud method, Comput. methods appl. Mech. eng. 139, 263-288 (1996) · Zbl 0893.73077 · doi:10.1016/S0045-7825(96)01086-9
[73]Liu, W. K.; Jun, S.; Zhang, Y. F.: Reproducing kernel particle methods, Int. J. Numer. methods eng. 20, 1081-1106 (1995) · Zbl 0881.76072 · doi:10.1002/fld.1650200824
[74]Liu, W. K.; Li, S.; Han, W.; Lu, H.; Cao, J.: Reproducing kernel element method. Part I. Theoretical formulation, Comput. methods appl. Mech. eng. 193, 933-951 (2004) · Zbl 1060.74670 · doi:10.1016/j.cma.2003.12.001
[75]Loehner, R.; Sacco, C.; Oñate, E.: A finite point method for compressible flow, Int. J. Numer. methods eng. 53, 1765-1779 (2002)
[76]Lu, H.; Chen, J. S.: Adaptive Galerkin particle method, Lect. notes comput. Sci. eng. 26, 251-267 (2002) · Zbl 1090.65547
[77]Lucy, L. B.: A numerical approach to the testing of the fission hypothesis, Astron. J. 82, 1013-1024 (1977)
[78]Melenk, J. M.; Babuška, I.: The partition of unity finite element method: basic theory and applications, Comput. methods appl. Mech. eng. 139, 289-314 (1996) · Zbl 0881.65099 · doi:10.1016/S0045-7825(96)01087-0
[79]Moës, N.; Dolbow, J.; Belytschko, T.: A finite element method for crack growth without remeshing, Int. J. Numer. methods eng. 46, 131-150 (1999) · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[80]Monaghan, J. J.: Why particle methods work, SIAM J. Sci. stat. Comput. 3, No. 3, 422-433 (1982) · Zbl 0498.76010 · doi:10.1137/0903027
[81]Monaghan, J. J.: An introduction to SPH, Comput. phys. Commun. 48, No. 1, 89-96 (1988) · Zbl 0673.76089 · doi:10.1016/0010-4655(88)90026-4
[82]Oñate, E.; Idelsohn, S.: A mesh-free finite point method for advective-diffusive transport and fluid flow problems, Comput. mech. 21, No. 4/5, 283-292 (1998) · Zbl 0919.76072 · doi:10.1007/s004660050304
[83]Oñate, E.; Idelsohn, S.; Zienkievicz, O. C.; Taylor, R. L.: A finite point method in computational mechanics: applications to convective transport and fluid flow, Int. J. Numer. methods eng. 39, 3839-3866 (1996) · Zbl 0884.76068 · doi:10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R
[84]Organ, D.; Fleming, M.; Terry, T.; Belytschko, T.: Continuous meshless approximations for nonconvex bodies by diffraction and transparency, Comput. mech. 18, 225-235 (1996) · Zbl 0864.73076 · doi:10.1007/BF00369940
[85]M.A. Puso, J.S. Chen, E. Zywicz, W. Elmer, Meshfree and finite element nodal integration methods, Int. J. Numer. Methods Eng. 74 (2008) 416 – 446. · Zbl 1159.74456 · doi:10.1002/nme.2181
[86]Rabczuk, T.; Belytschko, T.: An adaptive continuum/discrete crack approach for meshfree particle methods, Latin am. J. solids struct. 1, 141-166 (2003)
[87]Rabczuk, T.; Belytschko, T.: Adaptivity for structured meshfree particle methods in 2D and 3D, Int. J. Numer. methods eng. 63, No. 11, 1559-1582 (2005) · Zbl 1145.74041 · doi:10.1002/nme.1326
[88]Randles, P. W.; Libersky, L. D.: Recent improvements in sph modeling of hypervelocity impact, Int. J. Impact eng. 20, 525-532 (1997)
[89]Randles, P. W.; Libersky, L. D.: Normalized sph with stress points, Int. J. Numer. methods eng. 48, 1445-1462 (2000) · Zbl 0963.74079 · doi:10.1002/1097-0207(20000810)48:10<1445::AID-NME831>3.0.CO;2-9
[90]D. Shepard, A two-dimensional function for irregularly spaced points, in: Proceedings of the 23rd ACM National Conference, 1968, pp. 517 – 524.
[91]Strouboulis, T.; Copps, K.; Babuška, I.: The generalized finite element method: an example of its implementation and illustration of its performance, Int. J. Numer. methods eng. 47, No. 8, 1401-1417 (2000) · Zbl 0955.65080 · doi:10.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-8
[92]Sukumar, N.; Chopp, D. L.; Moës, N.; Belytschko, T.: Modelling holes and inclusions by level sets in the extended finite element method, Comput. methods appl. Mech. eng. 190, 6183-6200 (2000) · Zbl 1029.74049 · doi:10.1016/S0045-7825(01)00215-8
[93]Sukumar, N.; Chopp, D. L.; Moran, B.: Extended finite element method and fast marching method for three-dimensional fatigue crack propagation, Eng. fract. Mech. 70, 29-48 (2003)
[94]Sukumar, N.; Moës, N.; Moran, B.; Belytschko, T.: Extended finite element method for three-dimensional crack modelling, Int. J. Numer. methods eng. 48, 1549-1570 (2000) · Zbl 0963.74067 · doi:10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A
[95]Sumi, Y.: Computational crack path prediction, Theor. appl. Fract. mech. 4, 149-156 (1985)
[96]Sumi, Y.; Nemat-Nasser, S.; Keer, L. M.: On crack path stability in a finite body, Eng. fract. Mech. 22, 759-771 (1985)
[97]Swegle, L. W.; Hicks, D. L.; Attaway, S. W.: Smooth particle hydrodynamics stability analysis, J. comput. Phys. 116, 123-134 (1995) · Zbl 0818.76071 · doi:10.1006/jcph.1995.1010
[98]Ventura, G.: An augmented Lagrangian approach to essential boundary conditions in meshless methods, Int. J. Numer. methods eng. 53, 825-842 (2002)
[99]Ventura, G.; Xu, J. X.; Belytschko, T.: A vector level set method and new discontinuity approximations for crack growth by EFG, Int. J. Numer. methods eng. 54, 923-944 (2002) · Zbl 1034.74053 · doi:10.1002/nme.471
[100]Vila, L. P.: On particle weighted methods and smooth particle hydrodynamics, Math. models methods appl. Sci. 9, No. 2, 161-209 (1999) · Zbl 0938.76090 · doi:10.1142/S0218202599000117
[101]Xiao, S. P.; Belytschko, T.: Material stability analysis of particle methods, Adv. comput. Math. 23, 171-190 (2005) · Zbl 1060.74070 · doi:10.1007/s10444-004-1817-5
[102]You, Y.; Chend, J. S.; Lu, H.: Filters, reproducing kernel and adaptive meshfree method, Comput. mech. 31, 316-326 (2003) · Zbl 1038.74681
[103]Z.Q. Zhang, J.X. Zhou, X.M. Wang, Y.F. Zhang, L. Zhang, Investigations on reproducing kernel particle method enriched by partition of unity and visibility criterion, Comput. Mech. (2004), http://www.springerlink.com/link.asp?id=pxqfcbkr3ggfaf2b.
[104]Zienkiewicz, O. C.; Zhu, J. Z.: A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Numer. methods eng. 24, 337-357 (1987) · Zbl 0602.73063 · doi:10.1002/nme.1620240206
[105]T. Rabczuk, T. Belytschko, S.P. Xiao, Stable particle methods based on Lagrangian kernels, Comput. Methods Appl. Mech. Eng. 193 (12 – 14) (2004) 1035 – 1063. · Zbl 1060.74672 · doi:10.1016/j.cma.2003.12.005
[106]Huerta, A.; Belytschko, T.; Fernandez-Mendez, S.; Rabczuk, T.: Meshfree methods, Encyclopedia of computational mechanics (2004)
[107]Rabczuk, T.; Xiao, S. P.; Sauer, M.: Coupling of meshfree methods with finite elements: basic concepts and test results, Commun. numer. Methods eng. 22, No. 10, 1031-1065 (2006) · Zbl 1109.65082 · doi:10.1002/cnm.871
[108]H. Nguyen-Xuan, S. Bordas, H. Nguyen-Dang. Smooth finite elements: convergence, accuracy and properties, IJNME 74 (2008) 175 – 208. · Zbl 1159.74435 · doi:10.1002/nme.2146
[109]S. Bordas, T. Rabczuk, H. Nguyen-Xuan, S. Natarajan, Review and Recent Developments on the Smoothed Finite Element Method (SFEM) and First Results in the Smoothed eXtended Finite Element Method (SmXFEM), Comput. Struct. (2007), http://www.civil.gla.ac.uk/sim;bordas/pdf/.
[110]G.R. Liu, K.Y. Dai, T.T. Nguyen. A smoothed finite element for mechanics problems, CM 71 (2008) 175 – 208.
[111]Liu, G. R.; Nguyen, T. T.; Dai, K. Y.; Lam, K. Y.: Theoretical aspects of the smoothed finite element method (SFEM), Ijnme 71, No. 8, 902-930 (2007) · Zbl 1194.74432 · doi:10.1002/nme.1968
[112]Nguyen-Xuan, H.; Bordas, S.; Nguyen-Dang, H.: A smoothed finite element method for plate analysis, Cmame 197, No. 13 – 16, 1184-1203 (2008) · Zbl 1159.74434 · doi:10.1016/j.cma.2007.10.008
[113]Rabczuk, T.; Belytschko, T.: Cracking particles: a simplified meshfree method for arbitrary evolving cracks, Int. J. Numer. methods eng. 61, No. 13, 2316-2343 (2004) · Zbl 1075.74703 · doi:10.1002/nme.1151
[114]Rabczuk, T.; Areias, P. M. A.: A meshfree thin shell for arbitrary evolving cracks based on an external enrichment, Comput. model. Eng. sci. 16, No. 2, 115-130 (2006)
[115]Rabczuk, T.; Zi, G.: A meshfree method based on the local partition of unity for cohesive cracks, Comput. mech. 39, No. 6, 743-760 (2007) · Zbl 1161.74055 · doi:10.1007/s00466-006-0067-4
[116]T. Rabczuk, T. Belytschko. A three dimensional large deformation meshfree method for arbitrary evolving cracks, Comput. Methods Appl. Mech. Eng. 196 (29 – 30) (2007), 2777 – 2799. · Zbl 1128.74051 · doi:10.1016/j.cma.2006.06.020
[117]Zi, G.; Rabczuk, T.; Wall, W. A.: Extended meshfree methods without branch enrichment for cohesive cracks, Comput. mech. 40, No. 2, 367-382 (2007) · Zbl 1162.74053 · doi:10.1007/s00466-006-0115-0
[118]Rabczuk, T.; Areias, P. M. A.; Belytschko, T.: A simplified meshfree methods for shear bands with cohesive surfaces, Int. J. Numer. methods eng. 69, No. 5, 993-1021 (2007) · Zbl 1194.74536 · doi:10.1002/nme.1797
[119]S. Bordas, M. Duflot, Derivative recovery and a posteriori error estimate for extended finite elements, Comput. Methods Appl. Mech. Eng. 196 (35 – 36) (2007) 3381 – 3399. · Zbl 1173.74401 · doi:10.1016/j.cma.2007.03.011
[120]S. Bordas, M. Duflot, P. Le, A simple a posteriori error estimator for the extended finite element method, CNME 24 (2008) 961 – 971. · Zbl 1156.65093 · doi:10.1002/cnm.1001
[121]M. Duflot, S. Bordas, An extended global recovery procedure for a posteriori error estimation in extended finite element methods, IJNME, in press, http://www.civil.gla.ac.uk/sim;bordas/pdf/duflotbordas.pdf.
[122]E. Oñate, Possibilities of finite calculus in computational mechanics, Int. J. Numer. Methods Eng. 60 (1) (2004) 255 – 281. · Zbl 1060.76576 · doi:10.1002/nme.961
[123]N. Sukumar, Construction of Polygonal Interpolants: A Maximum Entropy Approach, IJNME 61 (12) (2004) 2159 – 2181. · Zbl 1073.65505 · doi:10.1002/nme.1193
[124]M. Arroyo, M. Ortiz, Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods, Int. J. Numer. Methods Eng. 65 (13) (2006) 2167 – 2202. · Zbl 1146.74048 · doi:10.1002/nme.1534
[125]H. Nguyen-Xuan, S. Bordas, H. Nguyen-Dang, Selective integration in the smoothed finite element method, Commun. Numer. Methods Eng. (2008), in press.
[126]N. Nguyen, H. Nguyen-Xuan, S. Bordas, H. Nguyen-Dang, A locking free smoothed finite element method for shells with high tolerance to mesh distortion, CMAME (2007), in press (http://www.civil.gla.ac.uk/sim;bordas/pdf/nxhbordas4.pdf).
[127]N. Sukumar, E.A. Malsch, Recent Advances in the Construction of Polygonal Finite Element Interpolants, Arch. Computat. Methods Eng. 13 (1) (2006) 129 – 163. · Zbl 1101.65108 · doi:10.1007/BF02905933
[128]A. Tabarraei, N. Sukumar, Extended finite element method on polygonal and quadtree meshes, Comput. Methods Appl. Mech. Eng. 197 (5) (2008) 425 – 435. · Zbl 1169.74634 · doi:10.1016/j.cma.2007.08.013