zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A fractal model for gas permeation through porous membranes. (English) Zbl 1152.76051
Summary: Macro and micro porous membranes have been used in many industrial areas. The disordered nature of pore structures in these membranes suggests the existence of a fractal structure formed by the pores. Fractal theory is employed to build the permeation model through these porous membranes. The fractal dimensions for surface pore area and tortuosity of membrane is obtained by box-counting method. Contrary to previous studies which consider only the Poiseulle flow in pores, in this research, the model reflects two gas diffusion mechanisms simultaneously: when the Knudsen number is less than 0.01, the Poiseulle flow is dominant; while when the Knudsen number is greater than 10, the Knudsen flow is dominant; and when the Knudsen number is from 0.01 to 10, the two mechanisms coexist. Contact gas permeation experiments with three porous hydrophobic PVDF membranes are conducted to validate the model. Comparisons between the current model and those from references are made.
76S05Flows in porous media; filtration; seepage
[1]Mason, E. A.; Maulinaskas, A. P.: Gas transport in porous media: the dusty gas model, (1983)
[2]Khayet, M.; Godino, P.; Mengual, J. I.: Nature of flow on sweeping gas membrane distillation, J. membr. Sci. 170, 243-255 (2000)
[3]Khayet, M.; Matsuura, T.: Pervaporation and vacuum membrane distillation processes: modeling and experiments, Aiche J. 50, 1697-1712 (2004)
[4]Martinez, L.; Florido-Diaz, F. J.; Hernandez, A.; Pradanos, P.: Characterization of three hydrophobic porous membranes used in membrane distillation, modeling and evaluation of their water vapor permeabilities, J. membr. Sci. 203, 15-27 (2002)
[5]Krohn, C. E.; Thompson, A. H.: Fractal sandstone pores: automated measurements using scanning-electron-microscope images, Phys. rev. 33, 6366 (1986)
[6]Mandelbrot, B. B.: The fractal geometry of nature, (1982) · Zbl 0504.28001
[7]Pitchumani, R.; Ramakrishnan, B.: A fractal geometry model for evaluating permeabilities of porous performs used in liquid composite molding, Int. J. Heat mass transfer 42, 2219-2232 (1999) · Zbl 0951.76576 · doi:10.1016/S0017-9310(98)00261-0
[8]Yu, B. M.: Comments on ”A fractal geometry model for evaluating permeabilities of porous preforms used in liquid composite molding”, Int. J. Heat mass transfer 44, 2787-2789 (2001) · Zbl 1121.76417 · doi:10.1016/S0017-9310(00)00322-7
[9]Yu, B.; Cheng, P.: A fractal permeability model for bi-dispersed porous media, Int. J. Heat mass transfer 45, 2983-2993 (2002) · Zbl 1101.76408 · doi:10.1016/S0017-9310(02)00014-5
[10]Yu, B. M.; Lee, L. J.: A fractal in-plane permeability model for fabrics, Polym. compos. 23, 201-221 (2002)
[11]Yu, B. M.; Li, J. H.; Zhang, D. M.: A fractal trans-plane permeability model for textile fabrics, Int. commun. Heat mass transfer 30, 127-138 (2003)
[12]Yu, B. M.; Lee, L. J.: A simplified in-plane permeability model for textile fabrics, Polym. compos. 21, 660-685 (2000)
[13]Yu, B. Y.; Liu, W.: Fractal analysis of permeabilities for porous media, Aiche J. 50, 46-56 (2004)
[14]Yu, B. M.; Zou, M. Q.; Feng, Y. J.: Permeability of fractal porous media by Monte Carlo simulations, Int. J. Heat mass transfer 48, 2787-2794 (2005) · Zbl 1189.74095 · doi:10.1016/j.ijheatmasstransfer.2005.02.008
[15]Meng, F. G.; Zhang, H. M.; Li, Y. S.; Zhang, X. W.; Yang, F. L.: Application of fractal permeation model to investigate membrane fouling in membrane bioreactor, J. membr. Sci. 262, 107-116 (2005)
[16]He, G. L.; Zhao, Z. C.; Ming, P. W.; Abuliti, A.; Yin, C. Y.: A fractal model for predicting permeability and liquid water relative permeability in the gas diffusion layer of pemfcs, J. power sources 163, 846-852 (2007)
[17]Cussler, E. L.: Diffusion – mass transfer in fluid systems, (2000)
[18]Zhang, L. Z.; Niu, J. L.: Effectiveness correlations for heat and moisture transfer processes in an enthalpy exchanger with membrane cores, ASME J. Heat transfer 122, 922-929 (2002)
[19]Incropera, F. P.; Dewitt, D. P.: Introduction to heat transfer, (1996)