zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Pricing currency options under two-factor Markov-modulated stochastic volatility models. (English) Zbl 1152.91550
Summary: This article investigates the valuation of currency options when the dynamic of the spot Foreign Exchange (FX) rate is governed by a two-factor Markov-modulated stochastic volatility model, with the first stochastic volatility component driven by a lognormal diffusion process and the second independent stochastic volatility component driven by a continuous-time finite-state Markov chain model. The states of the Markov chain can be interpreted as the states of an economy. We employ the regime-switching Esscher transform to determine a martingale pricing measure for valuing currency options under the incomplete market setting. We consider the valuation of the European-style and American-style currency options. In the case of American options, we provide a decomposition result for the American option price into the sum of its European counterpart and the early exercise premium. Numerical results are included.
91B28Finance etc. (MSC2000)
91B70Stochastic models in economics
[1]Back, K.; Pliska, S. R.: On the fundamental theorem of asset pricing with an infinite state space, Journal of mathematical economics 20, 1-18 (1991) · Zbl 0721.90016 · doi:10.1016/0304-4068(91)90014-K
[2]Bates, T.: Jumps and stochastic volatility: exchange rate processes implicit in deutsch mark options, Review of financial studies 9, 69-107 (1996)
[3]Biger, N.; Hull, J.: The valuation of currency options, Financial management 12, 24-28 (1983)
[4]Boyle, P. P.: Options: A Monte Carlo approach, Journal of financial economics 4, No. 4, 323-338 (1977)
[5]Bühlmann, H.; Delbaen, F.; Embrechts, P.; Shiryaev, A. N.: No-arbitrage, change of measure and conditional esscher transforms, CWI quarterly 9, No. 4, 291-317 (1996) · Zbl 0943.91037
[6]Bühlmann, H.; Delbaen, F.; Embrechts, P.; Shiryaev, A. N.: On esscher transforms in discrete finance models, ASTIN bulletin 28, No. 2, 171-186 (1998) · Zbl 1162.91367 · doi:10.2143/AST.28.2.519064
[7]Buffington, J.; Elliott, R. J.: Regime switching and European options, , 73-81 (2002)
[8]Buffington, J.; Elliott, R. J.: American options with regime switching, International journal of theoretical and applied finance 5, 497-514 (2002) · Zbl 1107.91325 · doi:10.1142/S0219024902001523
[9]Cox, J. C.; Ingersoll, J. E.; Ross, S. A.: A theory of the term structure of interest rates, Econometrica 53, 385-408 (1985)
[10]Delbaen, F.; Schachermayer, W.: A general version of fundamental theorem of asset pricing, Mathematische annalen 300, 463-520 (1994) · Zbl 0865.90014 · doi:10.1007/BF01450498
[11]Duffie, D.; Richardson, H. R.: Mean-variance hedging in continuous time, Annal of applied probability 1, 1-15 (1991) · Zbl 0735.90021 · doi:10.1214/aoap/1177005978
[12]Dybvig, P. H.; Ross, S. A.: Arbitrage, The new palsgrave: A dictionary of economics 1, 100-106 (1987)
[13]Elliott, R. J.; Chan, L. L.; Siu, T. K.: Option pricing and esscher transform under regime switching, Annals of finance 1, No. 4, 423-432 (2005) · Zbl 1233.91270 · doi:10.1007/s10436-005-0013-z
[14]Föllmer, H.; Schweizer, M.: Hedging of contingent claims under incomplete information, , 389-414 (1991) · Zbl 0738.90007
[15]Garman, M.; Kohlhangen, S.: Foreign currency option values, Journal of international money and finance 2, 239-253 (1983)
[16]Gerber, H. U.; Shiu, E. S. W.: Option pricing by esscher transforms (with discussions), Transactions of the society of actuaries 46, 99-191 (1994)
[17]Harrison, J. M.; Pliska, S. R.: Martingales and stochastic integrals in the theory of continuous trading, Stochastic processes and their applications 11, 215-280 (1981) · Zbl 0482.60097 · doi:10.1016/0304-4149(81)90026-0
[18]Harrison, J. M.; Pliska, S. R.: A stochastic calculus model of continuous trading: complete markets, Stochastic processes and their applications 15, 313-316 (1983) · Zbl 0511.60094 · doi:10.1016/0304-4149(83)90038-8
[19]Hamilton, J. D.: A new approach to the economic analysis of nonstationary time series and the business cycles, Econometrica 64, 307-333 (1989)
[20]Heston, S. L.: A closed-form solution for options with stochastic volatility, with applications to Bond and currency options, Review of financial studies 6, 327-343 (1993)
[21]Hull, J.; White, A.: The pricing of options on assets with stochastic volatilities, Journal of finance 42, 281-300 (1987)
[22]Johnson, H.; Shanno, D.: Option pricing when the variance is changing, Journal of financial and quantitative analysis 22, No. 2, 143-151 (1987)
[23]Melino, A.; Turnbull, S. M.: Pricing foreign currency options with stochastic volatility, Journal of econometrics 45, 239-265 (1990)
[24]Miyahara, Y.: Geometric Lévy process and MEMM: pricing model and related estimation problems, Asia–Pacific financial markets 8, 45-60 (2001) · Zbl 1070.91012 · doi:10.1023/A:1011445109763
[25]Pagan, A. R.; Schwert, G. W.: Alternative models for conditional stock volatility, Journal of econometrics 45, 267-290 (1990)
[26]Ryden, T.; Tersvirta, T.; Tsbrink, S.: Stylized facts of daily return series and the hidden Markov model, Journal of applied econometrics 13, No. 3, 217-244 (1998)
[27]Schachermayer, W.: A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time, Insurance: mathematics and economics 11, 249-257 (1992) · Zbl 0781.90010 · doi:10.1016/0167-6687(92)90013-2
[28]Schweizer, M.: Mean-variance hedging for general claims, Annals of applied probability 2, 171-179 (1992) · Zbl 0742.60042 · doi:10.1214/aoap/1177005776
[29]Shastri, K.; Wetheyavivorn, K.: The valuation of currency options for alternate stochastic processes, Journal of financial research 10, 283-293 (1987)