zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Non-fragile H filter design for linear continuous-time systems. (English) Zbl 1152.93365
Summary: This paper studies the problem of non-fragile H filter design for linear continuous-time systems. The filter to be designed is assumed to include additive gain variations, which result from filter implementations. A notion of structured vertex separator is proposed to approach the problem, and exploited to develop sufficient conditions for the non-fragile H filter design in terms of solutions to a set of Linear Matrix Inequalities (LMIs). The designs guarantee the asymptotic stability of the estimation errors, and the H performance of the system from the exogenous signals to the estimation errors below a prescribed level. A numerical example is given to illustrate the effect of the proposed method.
MSC:
93B36H -control
93C05Linear control systems
93D20Asymptotic stability of control systems