zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Generalized rough sets based on reflexive and transitive relations. (English) Zbl 1153.03316
Summary: We investigate the relationship between generalized rough sets induced by reflexive and transitive relations and the topologies on the universe which are not restricted to be finite. It is proved that there exists a one-to-one correspondence between the set of all reflexive and transitive relations and the set of all topologies which satisfy a certain kind of compactness condition.

MSC:
03E70Nonclassical set theories
68T30Knowledge representation
68T37Reasoning under uncertainty
54A10Several topologies on one set
References:
[1]Kondo, M.: On the structure of reneralized rough sets, Information sciences 176, 586-600 (2006) · Zbl 1096.03065 · doi:10.1016/j.ins.2005.01.001
[2]Kortelainen, J.: On the relationship between modified sets, topological spaces and rough sets, Fuzzy sets and systems 61, 91-95 (1994) · Zbl 0828.04002 · doi:10.1016/0165-0114(94)90288-7
[3]Pawlak, Z.: Rough sets, International journal of computer and information science 11, 341-356 (1982)
[4]Pawlak, Z.: Rough sets: theoretical aspects of reasoning about data, (1991) · Zbl 0758.68054
[5]Pawlak, Z.; Skowron, A.: Rudiments of rough sets, Information sciences 177, 3-27 (2007) · Zbl 1142.68549 · doi:10.1016/j.ins.2006.06.003
[6]Pawlak, Z.; Skowron, A.: Rough sets: some extensions, Information sciences 177, 28-40 (2007) · Zbl 1142.68550 · doi:10.1016/j.ins.2006.06.006
[7]Pawlak, Z.; Skowron, A.: Rough sets and Boolean reasoning, Information sciences 177, 41-73 (2007) · Zbl 1142.68551 · doi:10.1016/j.ins.2006.06.007
[8]see also: R. Slowinski, J. Stefanowski (Eds.), in: Proceedings of the First International Workshop on Rough Sets: State of the Art and Perspectives, Kiekrz, Poznan, Poland, September 2 – 4, 1992, pp. 54 – 56.
[9]Polkowski, L.: Mathematical morphology of rough sets, Bulletin of the Polish acadamy science mathematics 41, No. 3, 241-273 (1993) · Zbl 0806.68100
[10]L. Polkowski, Metric spaces of topological rough sets from countable knowledge bases, in: R. Slowinski, J. Stefanowski (Eds.), Foundations of Computing and Decision Sciences 18(3 – 4), 1993, special issue, pp. 293 – 306. · Zbl 0803.54005
[11]Polkowski, L.; Skowron, A.; Zytkow, J.: Rough foundations for rough sets, Soft computing: rough sets, fuzzy logic, neural networks, uncertainty management, knowledge discovery, 55-58 (1995)
[12]Skowron, A.; Stepaniuk, J.: Tolerance approximation spaces, Fundamenta informaticae 27, 245-253 (1996) · Zbl 0868.68103
[13]Yao, Y. Y.: Two views of the theory of rough sets in finite universes, International journal of approximate reasoning 15, 291-317 (1996)
[14]Yao, Y. Y.; Lin, T. Y.: Generalization of rough sets using modal logics, Intelligent automation and soft computing 2, 103-120 (1996)
[15]Yao, Y. Y.: Constructive and algebraic methods of the theory of rough sets, Information sciences 109, 21-47 (1998) · Zbl 0934.03071 · doi:10.1016/S0020-0255(98)00012-7
[16]Zhang, W. -X.; Wu, W. -Z.; Liang, J. -Y.; Li, D. -Y.: Rough sets theory and methods, (2001)