zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Asymptotic initial-value method for second-order singular perturbation problems of reaction-diffusion type with discontinuous source term. (English) Zbl 1153.65076

The authors consider the boundary value problem (BVP)

-εu '' (x)+a(x)u(x)=-f(x),x(0,d)(d,1),u(0)=p,u(1)=q,

where ε is a small parameter, a(x)α>0 a smooth function, f(x) is a sufficient smooth function on [0,d) and (d,1] which has a discontinuity at d. The solution of this singular BVP problem has, as a rule, two boundary and one interior layers. It is shown, that the solution can be approximated by the solution of the degenerated equation (with ε=0), i.e. u 0 (x)=f(x)/a(x), and solutions of four auxiliary problems for equations of first order: two initial value problems on (0,d) and two terminal value problems on (d,1). For the numerical solution of the auxiliary problems the fitted mesh method is used. Two numerical examples are presented.

MSC:
65L10Boundary value problems for ODE (numerical methods)
34B05Linear boundary value problems for ODE
65L12Finite difference methods for ODE (numerical methods)
65L20Stability and convergence of numerical methods for ODE
65L50Mesh generation and refinement (ODE)
34E15Asymptotic singular perturbations, general theory (ODE)
References:
[1]Nayfeh, A.H.: Introduction to Perturbation Methods. Wiley, New York (1981)
[2]Roos, H. -G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly-Perturbed Differential Equations. Springer, New York (1996)
[3]Doolan, E.P., Miller, J.J.H., Schilders, W.H.A.: Uniform Numerical Methods for Problems with Initial and Boundary Layers. Boole, Dublin (1980)
[4]Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust Computational Techniques for Boundary Layers. Chapman and Hall/CRC, Boca Raton (2000)
[5]Farrel, P.A., Hegarty, A.F., Miller, J.J.H., O’ Riordan, E., Shishkin, G.I.: Global maximum norm parameter-uniform numerical method for a singularly perturbed convection–diffusion problem with discontinuous convection coefficient. Math. Comput. Model. 40, 1375–1392 (2004) · Zbl 1075.65100 · doi:10.1016/j.mcm.2005.01.025
[6]Miller, J.J.H., O’ Riordan, E., Wang, S.: A parameter-uniform Schwartz method for a singularly-perturbed reaction–diffusion problem with an interior layer. Appl. Numer. Math. 35, 323–337 (2000) · Zbl 0967.65086 · doi:10.1016/S0168-9274(99)00140-3
[7]Roos, H.-G., Zarin, H.: A second-order scheme for singularly-perturbed differential equations with discontinuous source term. J. Numer. Math. 10, 275–289 (2002) · Zbl 1023.65077 · doi:10.1515/JNMA.2002.275
[8]Farrel, P.A., Miller, J.J.H., O’ Riordan, E., Shishkin, G.I.: Singularly-perturbed differential equations with discontinuous source terms, In: Miller, J.J.H., Shishkin, G.I. Vulkov, L. (eds.) Proceedings of Meeting on Analytical and Numerical Methods for Convection-Dominated and Singularly Perturbed Problems, Lozenetz, Bulgaria, 1998. pp. 23–32. Nova Science, New York (2000)
[9]Gasparo, M.G., Macconi, M.: Initial-value methods for second-order singularly-perturbed boundary-value problems. J. Optim. Theory Appl. 66, 197–210 (1990) · Zbl 0681.34018 · doi:10.1007/BF00939534
[10]Gasparo, M.G., Macconi, M.: Parallel initial-value algorithms for singularly-perturbed boundary-value problems. J. Optim. Theory Appl. 73, 501–517 (1992) · Zbl 0790.65076 · doi:10.1007/BF00940053
[11]Natesan, S., Ramanujam, N.: Initial-value technique for singularly-perturbed turning point problem exhibiting twin boundary layers. J. Optim. Theory Appl. 99, 37–52 (1998) · Zbl 0983.34050 · doi:10.1023/A:1021744025980
[12]Natesan, S., Ramanujam, N.: Initial-value technique for singularly-perturbed boundary-value problems for second order ordinary differential equations arising in chemical reactor theory. J. Optim. Theory Appl. 97, 455–470 (1998) · Zbl 0908.65070 · doi:10.1023/A:1022639003366
[13]Valanarasu, T., Ramanujam, N.: Asymptotic initial-value methods for two-parameter singularly-perturbed boundary-value problems for second order ordinary differential equations. Appl. Math. Comput. 137, 549–570 (2003) · Zbl 1033.65062 · doi:10.1016/S0096-3003(02)00160-1
[14]Valanarasu, T., Ramanujam, N.: Asymptotic initial-value method for singularly-perturbed boundary-value problems for second-order ordinary differential equations. J. Optim. Theory Appl. 116, 167–182 (2003) · Zbl 1043.34060 · doi:10.1023/A:1022118420907
[15]Valanarasu, T., Ramanujam, N.: An asymptotic initial-value method for boundary-value problems for a system of singularly-perturbed second-order ordinary differential equations. Appl. Math. Comput. 147, 227–240 (2004) · Zbl 1040.65071 · doi:10.1016/S0096-3003(02)00663-X
[16]Valanarasu, T., Ramanujam, N.: Asymptotic initial-value method for a system of singularly-perturbed second-order ordinary differential equations of convection diffusion type. Int. J. Comput. Math. 81, 1381–1393 (2004) · Zbl 1073.65067 · doi:10.1080/03057920412331272171
[17]Miller, J.J.H., O’Riordan, E., Shishkin, G.I., Wang, S.: A parameter-uniform Schwartz method for singularly-perturbed reaction–diffusion problem with an interior layer. Appl. Numer. Math. 35, 323–337 (2000) · Zbl 0967.65086 · doi:10.1016/S0168-9274(99)00140-3
[18]Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions. World Scientific, Singapore (1996)