zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On geometric discretization of elasticity. (English) Zbl 1153.81451

Summary: This paper presents a geometric discretization of elasticity when the ambient space is Euclidean. This theory is built on ideas from algebraic topology, exterior calculus and the recent developments of discrete exterior calculus. We first review some geometric ideas in continuum mechanics and show how constitutive equations of linearized elasticity, similar to those of electromagnetism, can be written in terms of a material Hodge star operator. In the discrete theory presented in this paper, instead of referring to continuum quantities, we postulate the existence of some discrete scalar-valued and vector-valued primal and dual differential forms on a discretized solid, which is assumed to be a triangulated domain. We find the discrete governing equations by requiring energy balance invariance under time-dependent rigid translations and rotations of the ambient space. There are several subtle differences between the discrete and continuous theories. For example, power of tractions in the discrete theory is written on a layer of cells with a nonzero volume. We obtain the compatibility equations of this discrete theory using tools from algebraic topology. We study a discrete Cosserat medium and obtain its governing equations. Finally, we study the geometric structure of linearized elasticity and write its governing equations in a matrix form. We show that, in addition to constitutive equations, balance of angular momentum is also metric dependent; all the other governing equations are topological.

Editorial remark: No review copy delivered.

MSC:
74A20Theory of constitutive functions