zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A globally and superlinearly convergent modified SQP-filter method. (English) Zbl 1153.90023
Author’s abstract: In this paper, we presented a modified SQP-filter method based on the modified quadratic subproblem proposed by G. I. Zhou [J. Glob. Optim. 11, 193–205 (1997; Zbl 0889.90135)]. In contrast with the SQP methods, each iteration this algorithm only needs to solve one quadratic programming subproblems and it is always feasible. Moreover, it has no demand on the initial point. With the filter technique, the algorithm shows good numerical results. Under some conditions, the globally and superlinearly convergent properties are given.
MSC:
90C55Methods of successive quadratic programming type
References:
[1]Boggs P.T., Tolle J.W. and Wang P. (1982). On the local convergence of quasi-newton methods for constrained optimization. SIAM J. Control Optim. 20: 161–171 · Zbl 0494.65036 · doi:10.1137/0320014
[2]Bonnons J.F., Painer E.R., Titts A.L. and Zhou J.L. (1992). Avoiding the Maratos effect by means of nonmontone linesearch, Inequality constrained problems-feasible iterates. SIAM J. Numer. Anal. 29: 1187–1202 · Zbl 0763.65042 · doi:10.1137/0729072
[3]Burke J.V. and Han S.P. (1989). A robust SQP method. Math. Program. 43: 277–303 · Zbl 0683.90070 · doi:10.1007/BF01582294
[4]Du D.Z., Pardalos P.M. and Wu W.L. (2001). Mathematical Theory of Optimization. Kluwer Academic Publishers, Boston
[5]Facchinei F. and Lucidi S. (1995). Quadraticly and superlinearly convergent for the solution of inequality constrained optimization problem. J. Optim. Theory Appl. 85: 265–289 · Zbl 0830.90125 · doi:10.1007/BF02192227
[6]Fletcher R. and Leyffer S. (2002). Nonlinear programming without a penalty function. Math. Program. 91: 239–269 · Zbl 1049.90088 · doi:10.1007/s101070100244
[7]Fletcher R., Leyffer S. and Toint P.L. (2002). On the global convergence of a filter-SQP algorithm. SIAM J. Optim. 13: 44–59 · Zbl 1029.65063 · doi:10.1137/S105262340038081X
[8]Fletcher R., Gould N.I.M., Leyffer S., Toint P.L. and Wachter A. (2002). Global convergence of a trust region SQP-filter algorithm for general nonlinear programming. SIAM J. Optim. 13: 635–660 · Zbl 1038.90076 · doi:10.1137/S1052623499357258
[9]Han S.P. (1976). Superlinearly convergence variable metric algorithm for general nonlinear programming problems. Math. Program. 11: 263–282 · Zbl 0364.90097 · doi:10.1007/BF01580395
[10]Nie P.Y. and Ma C.F. (2006). A trust region filter mehtod for general nonlinear programming. Appl. Math. Comput. 172: 1000–1017 · Zbl 1094.65060 · doi:10.1016/j.amc.2005.03.004
[11]Powell M.J.D. (1978). A fast algorithm for nonlinear constrained optimization calculations. In: Waston, G.A. (eds) Numerical Analysis., pp 144–157. Springer-Verlag, Berlin
[12]Powell, M.J.D.: Variable metric methods for constrained optimization. In: Bachen, A., et al. (eds.) Mathematical Programming-The state of Art. Springer-Verlag, Berlin (1982)
[13]Zhang J.L. and Zhang X.S. (2001). A modified SQP method with nonmonotone linesearch technique. J. Global Optim. 21: 201–218 · Zbl 1068.90616 · doi:10.1023/A:1011942228555
[14]Zhou G.L. (1997). A modified SQP method and its global convergence. J. Global Optim. 11: 193–205 · Zbl 0889.90135 · doi:10.1023/A:1008255227457
[15]Zhu Z.B., Zhang K.C. and Jian J.B. (2003). An improved SQP algorithm for inequality constrained optimization. Math. Methods Oper. Res. 58: 271–282 · Zbl 1067.90160 · doi:10.1007/s001860300299
[16]Zhu Z.B. (2005). A globally and superlinearly convergent feasible QP-free method for nonlinear programming. Appl. Math. Comput. 168: 519–539 · Zbl 1082.65064 · doi:10.1016/j.amc.2004.09.034