zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A bicriteria approach to minimize maximal lateness and resource consumption for scheduling a single machine. (English) Zbl 1153.90442
Summary: We extend the classical single-machine maximal lateness scheduling problem to the case where the job processing times are controllable by allocating a continuous and nonrenewable resource to the processing operations. Our aim is to construct an efficient trade-off curve between maximal lateness and total resource consumption using a bicriteria approach. We present a polynomial time algorithm that constructs this trade-off curve assuming a specified general type of convex decreasing resource consumption function. We illustrate the algorithm with a numerical example.
MSC:
90B35Scheduling theory, deterministic
References:
[1]Alidaee, B., & Ahmadian, A. (1993). Two parallel machine sequencing problems involving controllable job processing times. European Journal of Operational Research, 70, 335–341. · Zbl 0791.90028 · doi:10.1016/0377-2217(93)90245-I
[2]Cheng, T. C. E., & Kovalyov, M. Y. (1995). Single machine batch scheduling with deadlines and resource dependent processing times. Operations Research Letters, 17, 243–249. · Zbl 0858.90073 · doi:10.1016/0167-6377(95)00011-8
[3]Cheng, T. C. E., Janiak, A., & Kovalyov, M. Y. (1998). Bicriterion single machine scheduling with resource dependent processing times. SIAM Journal on Optimization, 8(2), 617–630. · Zbl 0907.68113 · doi:10.1137/S1052623495288192
[4]Daniels, R. L., & Sarin, R. K. (1989). Single machine scheduling with controllable processing times and number of jobs tardy. Operations Research, 37(6), 981–984. · Zbl 0686.90023 · doi:10.1287/opre.37.6.981
[5]Hoogeveen, H., & Woeginger, G. J. (2002). Some comments on sequencing with controllable processing times. Computing, 68, 181–192. · Zbl 1002.90027 · doi:10.1007/s00607-001-1441-x
[6]Jackson, J. R. (1955). Scheduling a production line to minimize maximum tardiness. Management Sciences Research Project, Research Report 43, UCLA.
[7]Janiak, A. (1987). One-machine scheduling with allocation of continuously-divisible resource and with no precedence constraints. Kybernetika, 23(4), 289–293.
[8]Janiak, A., & Kovalyov, M. Y. (1996). Single machine scheduling subject to deadlines and resource dependent processing times. European Journal of Operational Research, 94, 284–291. · Zbl 0947.90584 · doi:10.1016/0377-2217(96)00129-4
[9]Karush, W. (1939). Minima of functions of several variables with inequalities as side conditions. MS thesis, Department of Mathematics, University of Chicago.
[10]Kaspi, M., & Shabtay, D. (2006). A bicriterion approach to time/cost trade-offs in scheduling with convex resource-dependent job processing times and release dates. Computers and Operations Research, 33(10), 3015–3033. · Zbl 1086.90024 · doi:10.1016/j.cor.2005.02.032
[11]Kuhn, H. W., & Tucker, A. W. (1951). Nonlinear programming. In Proceedings of the second symposium (pp. 481–492). Berkeley: University of California Press.
[12]Lee, C. Y., & Lei, L. (2001). Multiple-project scheduling with controllable project duration and hard resource constraint: some solvable cases. Annals of Operations Research, 102, 287–307. · Zbl 0991.90523 · doi:10.1023/A:1010918518726
[13]Monma, C. L., Schrijver, A., Todd, M. J., & Wei, V. K. (1990). Convex resource allocation problems on directed acyclic graphs: duality, complexity, special cases and extensions. Mathematics of Operations Research, 15, 736–748. · Zbl 0717.90080 · doi:10.1287/moor.15.4.736
[14]Ng, C. T. D., Cheng, T. C. E., Kovalyov, M. Y., & Lam, S. S. (2003). Single machine scheduling with a variable common due date and resource-dependent processing times. Computer and Operations Research, 30, 1173–1185. · Zbl 1047.90022 · doi:10.1016/S0305-0548(02)00066-7
[15]Nowicki, E., & Zdrzalka, S. (1990). A survey of results for sequencing problems with controllable processing times. Discrete Applied Mathematics, 26, 271–287. · Zbl 0693.90056 · doi:10.1016/0166-218X(90)90105-L
[16]Shabtay, D. (2004). A single and a two-resource allocation problem for minimizing the maximal lateness in a single machine-scheduling problem. Computers and Operations Research, 31(8), 1303–1315. · Zbl 1073.90016 · doi:10.1016/S0305-0548(03)00081-9
[17]Shabtay, D., & Kaspi, M. (2004). Minimizing the total weighted flow time in a single machine with controllable processing times. Computers and Operations Research, 31(13), 2279–2289. · Zbl 1073.90017 · doi:10.1016/S0305-0548(03)00187-4
[18]Shabtay, D., & Steiner, G. (2007). A survey of scheduling with controllable processing times. Discrete Applied Mathematics, 155(13), 1643–1666. · Zbl 1119.90022 · doi:10.1016/j.dam.2007.02.003
[19]Shabtay, D., & Steiner, G. (2007, in press). Single machine batch scheduling to minimize total completion time and resource consumption costs. Journal of Scheduling.
[20]Shakhlevich, N. V., & Strusevich, V. A. (2006). Single machine scheduling with controllable release and processing times. Discrete Applied Mathematics, 154, 2178–2199. · Zbl 1111.90045 · doi:10.1016/j.dam.2005.04.014
[21]Van Wassenhove, L., & Baker, K. R. (1982). A bicriterion approach to time/cost trade-offs in sequencing. European Journal of Operational Research, 11, 48–54. · Zbl 0482.90043 · doi:10.1016/S0377-2217(82)80008-8
[22]Vickson, R. G. (1980). Two single machine sequencing problems involving controllable job processing times. AIIE Transactions, 12(3), 258–262.