zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On complete convergence for arrays of rowwise negatively associated random variables. (English) Zbl 1154.60319
Summary: Some results on complete convergence for arrays of rowwise negatively associated random variables are presented. They generalize some previous known results for rowwise independent random variables.

MSC:
60F15Strong limit theorems
References:
[1]Block, H. W.; Savits, T. H.; Sharked, M.: Some concepts of negative dependence, Ann. probab. 10, 765-772 (1982) · Zbl 0501.62037 · doi:10.1214/aop/1176993784
[2]Huang, W. T.; Xu, B.: Some maximal inequalities and complete convergence of negatively associated random sequences, Statist. probab. Lett. 57, 183-191 (2002) · Zbl 1084.60501 · doi:10.1016/S0167-7152(02)00049-4
[3]Jingjun, L.; Shixin, G.; Pingyan, C.: The hájeck–Rényi inequality for NA random variables and its application, Statist. probab. Lett. 43, 99-105 (1999) · Zbl 0929.60020 · doi:10.1016/S0167-7152(98)00251-X
[4]Joag-Dev, K.; Proschan, F.: Negative association of random variables with applications, Ann. statist. 11, 286-295 (1983) · Zbl 0508.62041 · doi:10.1214/aos/1176346079
[5]Li, Y. X.; Zhang, L. X.: Complete moment convergence of moving-average processes under dependence assumptions, Statist. probab. Lett. 70, 191-197 (2004) · Zbl 1056.62100 · doi:10.1016/j.spl.2004.10.003
[6]Liang, H.; Y.; Su, C.: Complete convergence for weighted sums of NA sequences, Statist. probab. Lett. 45, 85-95 (1999) · Zbl 0967.60032 · doi:10.1016/S0167-7152(99)00046-2
[7]La, P. Matu: A note on the almost sure convergence of sums of negatively dependent random variables, Statist. probab. Lett. 15, 209-213 (1992) · Zbl 0925.60024 · doi:10.1016/0167-7152(92)90191-7
[8]Pruitt, W. E.: Summability of independent random variables, J. math. Mech. 15, 769-776 (1966) · Zbl 0158.36403
[9]Rohatgi, V. K.: Convergence of weighted sums of independent random variables, Proc. cambrige philos. Soc. 69, 305-307 (1971) · Zbl 0209.20004
[10]Shao, Q. M.: A comparison theorem on moment inequalities between negatively associated and independent random variables, J. theoret. Probab. 13, 343-356 (2000) · Zbl 0971.60015 · doi:10.1023/A:1007849609234
[11]Su, C.; Zhao, L. C.; Wang, Y. B.: Moment inequalities and week convergence for negatively associated sequences, Sci. China ser. A 40, 172-182 (1997) · Zbl 0907.60023 · doi:10.1007/BF02874436
[12]Zhidong, B.; Chun, S.: The complete convergence for partial sums of i.i.d. Random variables, Sci. sinica ser. A 28, 1261-1277 (1985) · Zbl 0554.60039