zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solution for an anti-symmetric quadratic nonlinear oscillator by a modified He’s homotopy perturbation method. (English) Zbl 1154.65349
Summary: He’s homotopy perturbation method has been adapted to calculate higher-order approximate periodic solutions for a nonlinear oscillator with discontinuity for which the elastic force term is an anti-symmetric and quadratic term. We find that He’s homotopy perturbation method works very well for the whole range of initial amplitudes, and the excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Just one iteration leads to high accuracy of the solutions with a maximal relative error for the approximate period of less than 0.73% for all values of oscillation amplitude, while this relative error is as low as 0.040% when the second iteration is considered. Comparison of the result obtained using this method with those obtained by the harmonic balance method reveals that the former is very effective and convenient.
65L99Numerical methods for ODE
34A45Theoretical approximation of solutions of ODE