zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the convergence of the Weiszfeld algorithm for continuous single facility location-allocation problems. (English) Zbl 1154.90531
Summary: A general family of single facility continuous location-allocation problems is introduced, which includes the decreasingly weighted ordered median problem, the single facility Weber problem with supply surplus, and Weber problems with alternative fast transportation network. We show in this paper that the extension of the well known Weiszfeld iterative decrease method for solving the corresponding location problems with fixed allocation yields an always convergent scheme for the location allocation problems. In a generic way, from each starting point, the limit point will be a locally minimal solution, whereas for each possible exceptional situation, a possible solution is indicated. Some computational results are presented, comparing this method with an alternating location-allocation approach.
MSC:
90B85Continuous location
References:
[1]Brimberg J (2003) Further notes on convergence of the Weiszfeld algorithm. Yugosl J Oper Res 13(2):199–206 · Zbl 1274.90207 · doi:10.2298/YJOR0302199B
[2]Cánovas L, Cañavate R, Marín A (2002) On the convergence of the Weiszfeld algorithm. Math Program 93(2):327–330 · Zbl 1065.90054 · doi:10.1007/s101070200297
[3]Carrizosa E, Rodríguez-Chía AM (1997) Weber problems with alternative transportation systems. Eur J Oper Res 97:87–93 · Zbl 0923.90111 · doi:10.1016/S0377-2217(96)00066-5
[4]Chandrasekaran R, Tamir A (1989) Open questions concerning Weiszfeld’s algorithm for the Fermat–Weber location problem. Math Program 44(3):293–295 · Zbl 0683.90026 · doi:10.1007/BF01587094
[5]Cooper L (1963) Location–allocation problems. Oper Res 11:331–343 · Zbl 0113.14201 · doi:10.1287/opre.11.3.331
[6]Cooper L (1964) Heuristic methods for location–allocation problems. SIAM Rev 6:37–52 · doi:10.1137/1006005
[7]Dantzig GB (1957) Discrete variable extremum problems. Oper Res 5:266–277 · doi:10.1287/opre.5.2.266
[8]Drezner Z, Suzuki A (2004) The big triangle small triangle method for the solution of non-convex facility location problems. Oper Res 52(1):128–135 · Zbl 1165.90552 · doi:10.1287/opre.1030.0077
[9]Drezner Z, Klamroth K, Schöbel A, Wesolowsky GO (2003) The Weber problem. In: Drezner Z, Hamacher H (eds) Facility location: applications and theory. Springer, Berlin, pp 1–36
[10]Eilon S, Watson-Gandy CDT, Christofides N (1971) Distribution management. Hafner, New York
[11]Francis RL, McGinnis LF, White JA (1992) Facility layout and location: an analytical approach, 2nd edn. Prentice Hall, Englewood Cliffs
[12]Gugat M, Pfeiffer B (2007) Weber problems with mixed distances and regional demand. Math Methods Oper Res 66:419–449 · Zbl 1146.90464 · doi:10.1007/s00186-007-0165-x
[13]Hansen P, Peeters D, Thisse J-F (1983) Public facility location models: a selective survey. In: Thisse J-F, Zoller HG (eds) Locational analysis of public facilities. North-Holland, Amsterdam, pp 223–262
[14]Hansen P, Peeters D, Richard D, Thisse J-F (1985) The minisum and minimax location problems revisited. Oper Res 33:1251–1265 · Zbl 0582.90027 · doi:10.1287/opre.33.6.1251
[15]Kaufman L, Plastria F (1988) The Weber problem with supply surplus. Belgian J Oper Res Stat Comput Sci 28:15–31
[16]Kuhn HW, Kuenne RE (1962) An efficient algorithm for the numerical solution of the generalized Weber problem in spatial economics. J Reg Sci 4:21–33 · doi:10.1111/j.1467-9787.1962.tb00902.x
[17]Kupitz YS, Martini H (1997) Geometric aspects of the generalized Fermat-Torricelli problem. In: Intuitive geometry, Bolyai society, Mathematical studies, vol 6, pp 55–127
[18]Martello S, Toth P (1990) Knapsack problems–algorithms and computer implementations. Wiley, Chichester
[19]Nickel S, Puerto J (2005) Location theory–a unified approach. Springer, Berlin
[20]Okabe A, Boots B, Sugihara K (1992) Spatial tessellations. Concept and applications of Voronoi diagram. Wiley, Chichester
[21]Pfeiffer B, Klamroth K (2008) A unified model for Weber problems with continuous and network distances. Comput Oper Res 35(2):312–326 · Zbl 1141.90024 · doi:10.1016/j.cor.2006.03.001
[22]Plastria F (1992) GBSSS: the generalized big square small square method for planar single facility location. Eur J Oper Res 62(2):163–174 · Zbl 0760.90067 · doi:10.1016/0377-2217(92)90244-4
[23]Vardi Y, Zhang C-H (2001) A modified Weiszfeld algorithm for the Fermat–Weber location problem. Math Program 90:559–566 · doi:10.1007/PL00011435
[24]Weiszfeld E (2008) On the point for which the sum of the distances to n given points is minimum (translated and annotated by F. Plastria). Ann Oper Res. doi: 10.1007/s10479-008-0352-z
[25]Weiszfeld E (1936–1937) Sur le point pour lequel la somme des distances de n points donnés est minimum. Tohoku Math J 355–386
[26]Wesolowsky G (1993) The Weber problem: History and perspective. Location Sci 1:5–23