zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Ant colony optimization theory: a survey. (English) Zbl 1154.90626
Summary: Research on a new metaheuristic for optimization is often initially focused on proof-of-concept applications. It is only after experimental work has shown the practical interest of the method that researchers try to deepen their understanding of the method’s functioning not only through more and more sophisticated experiments but also by means of an effort to build a theory. Tackling questions such as “how and why the method works” is important, because finding an answer may help in improving its applicability. Ant colony optimization, which was introduced in the early 1990s as a novel technique for solving hard combinatorial optimization problems, finds itself currently at this point of its life cycle. With this article we provide a survey on theoretical results on ant colony optimization. First, we review some convergence results. Then we discuss relations between ant colony optimization algorithms and other approximate methods for optimization. Finally, we focus on some research efforts directed at gaining a deeper understanding of the behavior of ant colony optimization algorithms. Throughout the paper we identify some open questions with a certain interest of being solved in the near future.
MSC:
90C59Approximation methods and heuristics
90-02Research monographs (optimization)
68T05Learning and adaptive systems
90C57Polyhedral combinatorics, branch-and-bound, branch-and-cut
90C27Combinatorial optimization
68W25Approximation algorithms
Software:
MACS-VRPTW