zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Estimation in continuous-time stochastic volatility models using nonlinear filters. (English) Zbl 1154.91467
Summary: The stylized facts of stock prices, interest and exchange rates have led econometricians to propose stochastic volatility models in both discrete and continuous time. However, the volatility as a measure of economic uncertainty is not directly observable in the financial markets. The objective of the continuous-discrete filtering problem considered here is to obtain estimates of the stock price and, in particular, the volatility using discrete-time observations of the stock price. Furthermore, the nonlinear filter acts as an important part of a proposed method for maximum likelihood for estimating embedded parameters in stochastic differential equations. In general, only approximate solutions to the continuous-discrete filtering problem exist in the form of a set of ordinary differential equations for the mean and covariance of the state variables. In the present paper the small-sample properties of a second order filter is examined for some bivariate stochastic volatility models and the new combined parameter and state estimation method is applied to US stock market data.
MSC:
91B28Finance etc. (MSC2000)
60H15Stochastic partial differential equations