zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exponential stability of linear distributed parameter systems with time-varying delays. (English) Zbl 1154.93404
Summary: Exponential stability analysis via the Lyapunov-Krasovskii method is extended to linear time-delay systems in a Hilbert space. The operator acting on the delayed state is supposed to be bounded. The system delay is admitted to be unknown and time-varying with an a priori given upper bound on the delay. Sufficient delay-dependent conditions for exponential stability are derived in the form of Linear Operator Inequalities (LOIs), where the decision variables are operators in the Hilbert space. Being applied to a heat equation and to a wave equation, these conditions are reduced to standard Linear Matrix Inequalities (LMIs). The proposed method is expected to provide effective tools for stability analysis and control synthesis of distributed parameter systems.
93D05Lyapunov and other classical stabilities of control systems
93C05Linear control systems
93B50Synthesis problems