zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Pinning control of complex dynamical networks with heterogeneous delays. (English) Zbl 1155.34353
Summary: Complex dynamical networks with heterogeneous delays in both continuous- and discrete-time domains are controlled by applying local feedback injections to a small fraction of nodes in the whole network. Some generic stability criteria ensuring delay-independent stability are derived for such controlled networks in terms of linear matrix inequalities (LMI), which guarantee that by placing a small number of feedback controllers on some nodes, the whole network can be pinned to its equilibrium. In some particular cases, a single controller can achieve the control objective. Numerical simulations of various representative networks, including a globally coupled network, a star-coupled network and an Extended Barabási-Albert (EBA) scale-free network, are finally given for illustration and verification.
34K20Stability theory of functional-differential equations
37N35Dynamical systems in control
93D15Stabilization of systems by feedback
[1]Watts, D. J.; Strogatz, S. H.: Collective dynamics of ’small world’ networks, Nature 393, 440-442 (1998)
[2]Barabási, A. -L.; Albert, R.: Emergence of scaling in random networks, Science 289, 509-512 (1999) · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[3]Wang, X. F.; Chen, G.: Synchronization in scale-free dynamical networks: robustness and fragility, IEEE trans. Circuits syst. I 49, 54-62 (2002)
[4]Wang, X. F.; Chen, G.: Pinning control of scale-free dynamical networks, Physica A 310, 521-531 (2002) · Zbl 0995.90008 · doi:10.1016/S0378-4371(02)00772-0
[5]Li, X.; Wang, X. F.; Chen, G.: Pinning a complex dynamical network to its equilibrium, IEEE trans. Circuits syst. I 51, 2074-2086 (2004)
[6]Xiang, L. Y.; Liu, Z. X.; Chen, Z. Q.; Chen, F.; Yuan, Z. Z.: Pinning control of complex dynamical networks with general topology, Physica A 379, 298-306 (2007)
[7]Chen, T. P.; Liu, X. W.; Lu, W. L.: Pinning complex networks by a single controller, IEEE trans. Circuits syst. I 54, 1317-1326 (2007)
[8]Z.Q. Chen, L.Y. Xiang, Z.X. Liu, Z.Z. Yuan, Pinning control of model-based complex dynamical networks-discrete time case, in: Proc. WCICA 2006, June, 21–23, Dalian, 2006, pp. 11–15
[9]Liu, Z. X.; Chen, Z. Q.; Yuan, Z. Z.: Pinning control of weighted general complex dynamical networks with time delay, Physica A 375, 345-354 (2007)
[10]Li, C.; Chen, G.: Synchronization in general complex dynamical networks with coupling delays, Physica A 343, 263-278 (2004)
[11]Wu, J. S.; Jiao, L. C.: Synchronization in complex delayed dynamical networks with nonsymmetric coupling, Physica A 386, 513-530 (2007)
[12]Bapart, R. B.: Nonnegative matrices and applications, (1997)
[13]Horn, R.; Johnson, C.: Matrix analysis, (2005)
[14]Albert, R.; Barabási, A. -L.: Toppology of evolving networks: local events and universality, Phys. rev. Lett. 85, 5234-5237 (2000)