zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Weighted Hardy and singular operators in Morrey spaces. (English) Zbl 1155.42005
In the interesting paper under review, the author studies the weighted boundedness of the Cauchy singular integral operator S Γ in the framework of the Morrey spaces p,λ (Γ) on curves satisfying the arc-chord condition, for a class of “radial type” almost monotonic weights. The non-weighted boundedness is shown to hold over an arbitrary Carleson curve, while the weighted boundedness is reduced to the boundedness of weighted Hardy operators in Morrey spaces p,λ (0,),>0· Conditions are found for the weighted Hardy operators in order to be bounded in Morrey spaces. To cover the case of curves, the author extends the boundedness of the Hardy-Littlewood maximal operator in Morrey spaces, known in the Euclidean setting, to the case of Carleson curves.
42B20Singular and oscillatory integrals, several variables
42B25Maximal functions, Littlewood-Paley theory
[1]Adams, D. R.: A note on Riesz potentials, Duke math. J. 42, 765-778 (1975) · Zbl 0336.46038 · doi:10.1215/S0012-7094-75-04265-9
[2]Adams, D. R.; Xiao, J.: Nonlinear potential analysis on Morrey spaces and their capacities, Indiana univ. Math. J. 53, No. 6, 1631-1666 (2004) · Zbl 1100.31009 · doi:10.1512/iumj.2004.53.2470
[3]Almeida, A.; Hasanov, J.; Samko, S.: Maximal and potential operators in variable exponent Morrey spaces, Georgian math. J. 15, No. 2, 195-208 (2008)
[4]Alvarez, J.: The distribution function in the Morrey space, Proc. amer. Math. soc. 83, 693-699 (1981) · Zbl 0478.46025 · doi:10.2307/2044236
[5]Alvarez, T.; Pérez, C.: Estimates with A weights for various singular integral operators, Boll. unione mat. Ital. sez. A (7) 8, No. 1, 123-133 (1994) · Zbl 0807.42013
[6]Arai, H.; Mizuhara, T.: Morrey spaces on spaces of homogeneous type and estimates for □b and the Cauchy – Szego projection, Math. nachr. 185, No. 1, 5-20 (1997)
[7]Bari, N. K.; Stechkin, S. B.: Best approximations and differential properties of two conjugate functions, Proc. Moscow math. Soc. 5, 483-522 (1956)
[8]Böttcher, A.; Karlovich, Yu.: Carleson curves, Muckenhoupt weights, and Toeplitz operators, (1997)
[9]Burenkov, V. I.; Guliyev, H.: Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces, Studia math. 163, No. 2, 157-176 (2004) · Zbl 1044.42015 · doi:10.4064/sm163-2-4 · doi:http://journals.impan.gov.pl/sm/Inf/163-2-4.html
[10]Chiarenza, F.; Frasca, M.: Morrey spaces and Hardy – Littlewood maximal function, Rend. math. 7, 273-279 (1987) · Zbl 0717.42023
[11]Coifman, R. R.; Rochberg, R.: Another characterization of BMO, Proc. amer. Math. soc. 79, 249-254 (1980) · Zbl 0432.42016 · doi:10.2307/2043245
[12]Coifman, R. R.; Weiss, G.: Analyse harmonique non-commutative sur certaines espaces homegenes, Lecture notes in math. 242 (1971) · Zbl 0224.43006
[13]Di Fazio, G.; Ragusa, M. A.: Commutators and Morrey spaces, Boll. unione mat. Ital. sez. A 7, No. 5, 323-332 (1991) · Zbl 0761.42009
[14]Ding, Y.; Lu, S.: Boundedness of homogeneous fractional integrals on lp for n/a<p, Nagoya math. J. 167, 17-33 (2002) · Zbl 1031.42015 · doi:euclid:nmj/1114649290
[15]Fefferman, C.; Stein, E. M.: Some maximal inequalities, Amer. J. Math. 93, 107-115 (1971) · Zbl 0222.26019 · doi:10.2307/2373450
[16]Gakhov, F. D.: Boundary value problems, (1977)
[17]Garcia, J. L.; Soria, J. Javier: Weighted inequalities and the shape of approach regions, Studia math. 133, 261-274 (1999) · Zbl 0973.42010
[18]Genebashvili, I.; Gogatishvili, A.; Kokilashvili, V.; Krbec, M.: Weight theory for integral transforms on spaces of homogeneous type, Pitman monogr. Surv. pure appl. Math. (1998)
[19]Giaquinta, M.: Multiple integrals in the calculus of variations and non-linear elliptic systems, (1983)
[20]Gohberg, I.; Krupnik, N.: One-dimensional linear singular integral equations, vol. I. introduction, Oper. theory adv. Appl. 53 (1992)
[21]Gohberg, I.; Krupnik, N.: One-dimensional linear singular integral equations, vol. II. general theory and applications, Oper. theory adv. Appl. 54 (1992) · Zbl 0781.47038
[22]Heinonen, J.: Lectures on analysis on metric spaces, Universitext (2001)
[23]Karapetiants, N. K.; Samko, N. G.: Weighted theorems on fractional integrals in the generalized hölder spaces H0ω(ρ) via the indices mω and Mω, Fract. calc. Appl. anal. 7, No. 4, 437-458 (2004) · Zbl 1114.26005
[24]Kokilashvili, V.; Meskhi, A.: Boundedness of maximal and singular operators in Morrey spaces with variable exponent, Govern. college univ., lahore 72, 1-11 (2008)
[25]Kokilashvili, V.; Paatashvili, V.; Samko, S.: Boundedness in Lebesgue spaces with variable exponent of the Cauchy singular operators on Carleson curves, Oper. theory adv. Appl. 170, 167-186 (2006) · Zbl 1121.47024
[26]Krein, S. G.; Petunin, Yu.I.; Semenov, E. M.: Interpolation of linear operators, (1978) · Zbl 0499.46044
[27]Kufner, A.; John, O.; Fučik, S.: Function spaces, (1977)
[28]Maligranda, Lech: Indices and interpolation, Dissertationes math. (Rozprawy mat.) 234, 49 (1985) · Zbl 0566.46038
[29]Lech Maligranda, Orlicz spaces and interpolation, Departamento de Matemática, Universidade Estadual de Campinas, Campinas, SP, Brazil, 1989 · Zbl 0874.46022
[30]Matuszewska, W.; Orlicz, W.: On some classes of functions with regard to their orders of growth, Studia math. 26, 11-24 (1965) · Zbl 0134.31604
[31]Morrey, C. B.: On the solutions of quasi-linear elliptic partial differential equations, Amer. math. Soc. 43, 126-166 (1938) · Zbl 0018.40501 · doi:10.2307/1989904
[32]Muskhelishvili, N. I.: Singular integral equations, (1953) · Zbl 0051.33203
[33]Nakai, E.: Hardy – Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. nachr. 166, 95-103 (1994) · Zbl 0837.42008 · doi:10.1002/mana.19941660108
[34]Nakai, E.: On generalized fractional integrals, Taiwanese J. Math. 5, No. 3, 587-602 (2001) · Zbl 0990.26007
[35]Nakai, E.: The campanato, Morrey and holder spaces on spaces of homogeneous type, Studia math. 176, 1-19 (2006) · Zbl 1121.46031 · doi:10.4064/sm176-1-1
[36]Nakai, E.; Sumitomo, H.: On generalized Riesz potentials and spaces of some smooth functions, Sci. math. Jpn. 54, No. 3, 463-472 (2001) · Zbl 0995.43004
[37]Palagachev, D. K.; Softova, L. G.: Singular integral operators, Morrey spaces and fine regularity of solutions to PDE’s, Potential anal. 20, 237-263 (2004) · Zbl 1036.35045 · doi:10.1023/B:POTA.0000010664.71807.f6
[38]Peetre, J.: On convolution operators leaving lp,λ spaces invariant, Ann. mat. Pura appl. 72, No. 1, 295-304 (1966) · Zbl 0149.09102 · doi:10.1007/BF02414340
[39]Peetre, J.: On the theory of lp,λ spaces, Funct. anal. 4, 71-87 (1969) · Zbl 0175.42602 · doi:10.1016/0022-1236(69)90022-6
[40]Pradolini, G.; Salinas, O.: Maximal operators on spaces of homogeneous type, Proc. amer. Math. soc. 132, 435-441 (2004) · Zbl 1044.42021 · doi:10.1090/S0002-9939-03-07079-5
[41]Ragusa, M. A.: Commutators of fractional integral operators on vanishing – Morrey spaces, J. global optim. 40, No. 1 – 3, 361-368 (2008) · Zbl 1143.42020 · doi:10.1007/s10898-007-9176-7
[42]Samko, N. G.: Singular integral operators in weighted spaces with generalized hölder condition, Proc. A. Razmadze math. Inst. 120, 107-134 (1999) · Zbl 0946.45006
[43]Samko, N. G.: On non-equilibrated almost monotonic functions of the Zygmund – bary – stechkin class, Real anal. Exchange 30, No. 2, 727-745 (2004/2005) · Zbl 1106.26012
[44]Shirai, S.: Necessary and sufficient conditions for boundedness of commutators of fractional integral operators on classical Morrey spaces, Hokkaido math. J. 35, No. 3, 683-696 (2006) · Zbl 1122.42007
[45]Spanne, S.: Some function spaces defined by using the mean oscillation over cubes, Ann. sc. Norm. super. Pisa 19, 593-608 (1965) · Zbl 0199.44303 · doi:numdam:ASNSP_1965_3_19_4_593_0
[46]Stampacchia, G.: The spaces lp,λ,N(p,λ) and interpolation, Ann. sc. Norm. super. Pisa 3, No. 19, 443-462 (1965) · Zbl 0149.09202 · doi:numdam:ASNSP_1965_3_19_3_443_0
[47]Stein, E. M.: Harmonic analysis: real-variable methods, orthogonality and oscillatory integrals, (1993)
[48]Taylor, M. E.: Tools for PDE: pseudodifferential operators, paradifferential operators, and layer potentials, Math. surveys monogr. 81 (2000) · Zbl 0963.35211
[49]Yang, D.: Some function spaces relative to Morrey – campanato spaces on metric spaces, Nagoya math. J. 177, 1-29 (2005) · Zbl 1062.42012