zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multivariate spectral gradient method for unconstrained optimization. (English) Zbl 1155.65046

The authors present the multivariate spectral gradient (MSG) method for solving unconstrained optimization problems. Combined with some quasi-Newton property the MSG method allows an individual adaptive stepsize along each coordinate direction, which guarantees that the method is finitely convergent for positive definite quadratics. Especially, it converges no more than two steps for positive definite quadratics with diagonal Hessian, and quadratically for objective functions with positive definite diagonal Hessian. Moreover, based on a nonmonotone line search, global convergence is established for the MSG algorithm.

Also a numerical study of the MSG algorithm compared with the global Barzilai-Borwein (GBB) algorithm is given. The search direction of the MSG method is close to that presented in the paper by M. N. Vrahatis, G. S. Androulakis, J. N. Lambrinos and G. D. Magoulas [J. Comput. App. Math. 114, 367–386 (2000; Zbl 0958.65072)], but the explanation for the steplength selection is different. The stepsize in this method is selected from the estimates of the eigenvalues of the Hessian but not a local estimation of the Lipschitz constant in the above mentioned paper. At last numerical results are reported, which show that this method is promising and deserves futher discussing.

MSC:
65K05Mathematical programming (numerical methods)
90C30Nonlinear programming
90C53Methods of quasi-Newton type