zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Comparison between Adomian’s method and He’s homotopy perturbation method. (English) Zbl 1155.65344
Summary: In this paper, it is revealed that modified form of He’s homotopy perturbation method corresponds to Adomian’s decomposition method for certain nonlinear problems.
MSC:
65J15Equations with nonlinear operators (numerical methods)
References:
[1]He, J. H.: Homotopy perturbation technique, Computer methods in applied mechanics and engineering 178, No. 3–4, 257-262 (1999)
[2]He, J. H.: A coupling method of a homotopy technique and a perturbation technique for non-linear problems, International journal of non-linear mechanics 35, No. 1, 37-43 (2000) · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[3]He, J. H.: Homotopy perturbation method: A new nonlinear analytical technique, Applied mathematics and computation 135, No. 1, 73-79 (2003) · Zbl 1030.34013 · doi:10.1016/S0096-3003(01)00312-5
[4]He, J. H.: New interpretation of homotopy perturbation method, International journal of modern physics B 20, No. 18, 2561-2568 (2006)
[5]He, J. H.: Homotopy perturbation method for solving boundary value problems, Physics letters A 350, No. 1–2, 87-88 (2006) · Zbl 1195.65207 · doi:10.1016/j.physleta.2005.10.005
[6]J.H. He, Non-Perturbative Methods for Strongly Nonlinear Problems, dissertation. de-verlag im Internet GmbH, Berlin, 2006
[7]Öziş, T.; Yıldırım, A.: A note on he’s homotopy perturbation method for van der Pol oscillator with very strong nonlinearity, Chaos solitons fractals 37, 989-991 (2007)
[8]Öziş, T.; Yıldırım, A.: Traveling wave solution of Korteweg-de Vries equation using he’s homotopy perturbation method, International journal of nonlinear sciences and numerical simulation 8, No. 2, 239-242 (2007)
[9]Öziş, T.; Yıldırım, A.: A comparative study of he’s homotopy perturbation method for determining frequency–amplitude relation of a non-linear oscillator with discontinuities, International journal of nonlinear sciences and numerical simulation 8, No. 2, 243-248 (2007)
[10]Yıldırım, A.; Öziş, T.: Solutions of singular ivps of Lane-Emden type by homotopy perturbation method, Physics letters A 369, 70-76 (2007) · Zbl 1209.65120 · doi:10.1016/j.physleta.2007.04.072
[11]Dehghan, M.; Shakeri, F.: Solution of an integro-differential equation arising in oscillating magnetic fields using he’s homotopy perturbation method, Progress in electromagmentics research, PIER 78, 361-376 (2008)
[12]Shakeri, F.; Dehghan, M.: Inverse problem of diffusion equation by he’s homotopy perturbation method, Physica scripta 75, 551-556 (2007) · Zbl 1110.35354 · doi:10.1088/0031-8949/75/4/031
[13]Dehghan, M.; Shakeri, F.: Solution of a partial differential equation subject to temperature overspecification by he’s homotopy perturbation method, Physica scripta 75, 778-787 (2007) · Zbl 1117.35326 · doi:10.1088/0031-8949/75/6/007
[14]Shakeri, F.; Dehghan, M.: Solution of delay differential equations via a homotopy perturbation method, Mathematical and computer modelling (2007)
[15]Adomian, G.: A review of the decomposition method and some recent results for nonlinear equation, Mathematical and computer modelling 13, No. 7, 17-43 (1992) · Zbl 0713.65051 · doi:10.1016/0895-7177(90)90125-7
[16]Adomian, G.: A review of the decomposition method in applied mathematics, Journal of mathematical analysis and application 135, 501-544 (1988) · Zbl 0671.34053 · doi:10.1016/0022-247X(88)90170-9
[17]Adomian, G.: Solving frontier problems of physics: the decomposition method, (1994)
[18]Wazwaz, A. -M.: A reliable modification of Adomian’s decomposition method, Applied mathematics and computation 92, 1-7 (1998)
[19]Wazwaz, A. -M.: A comparison between Adomian decomposition method and Taylor series method in the series solution, Applied mathematics and computation 79, 37-44 (1998) · Zbl 0943.65084 · doi:10.1016/S0096-3003(97)10127-8
[20]Wazwaz, A. -M.: Adomian decomposition method for a reliable treatment of the bratu-type equations, Applied mathematics and computation 166, 652-663 (2005) · Zbl 1073.65068 · doi:10.1016/j.amc.2004.06.059
[21]Wazwaz, A. -M.: Partial differential equations: methods and applications, (2002)
[22]Wazwaz, A. -M.: A new algorithm for calculating Adomian polynomials for nonlinear operators, Applied mathematics and computation 111, 53-69 (2000) · Zbl 1023.65108 · doi:10.1016/S0096-3003(99)00047-8
[23]Deeba, E.; Khuri, S. A.; Xie, S.: An algorithm for solving boundary value problems, Journal of computational physics 159, 125-138 (2000) · Zbl 0959.65091 · doi:10.1006/jcph.2000.6452
[24]Biazar, J.; Babolian, E.; Kember, G.; Nouri, A.; Islam, R.: An alternative algorithm for computing Adomian polynomials in special cases, Applied mathematics and computation 138, 523-529 (2003) · Zbl 1027.65076 · doi:10.1016/S0096-3003(02)00174-1
[25]Babolian, E.; Javadi, Sh.: New method for calculating Adomian polynomials, Applied mathematics and computation 153, 253-259 (2004) · Zbl 1055.65068 · doi:10.1016/S0096-3003(03)00629-5
[26]Zhu, Y.; Chang, Q.; Wu, S.: A new algorithm for calculating Adomian polynomials, Applied mathematics and computation 169, 402-416 (2005) · Zbl 1087.65528 · doi:10.1016/j.amc.2004.09.082
[27]Pourdarvish, A.: A reliable symbolic implementation of algorithm for calculating Adomian polynomials, Applied mathematics and computation 172, 545-550 (2006) · Zbl 1088.65021 · doi:10.1016/j.amc.2005.02.040
[28]Ghorbani, A.; Saber-Nadjafi, J.: He’s homotopy perturbation method for calculating Adomian polynomials, International journal of nonlinear sciences and numerical simulation 8, No. 2, 229-232 (2007)