zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical methods for two-parameter local bifurcation analysis of maps. (English) Zbl 1155.65397
Summary: We discuss new and improved algorithms for the bifurcation analysis of fixed points and periodic orbits (cycles) of maps and their implementation in matcont, a MATLAB toolbox for continuation and bifurcation analysis of dynamical systems. This includes the numerical continuation of fixed points of iterates of the map with one control parameter, detecting and locating their bifurcation points (i.e., limit point, period-doubling, and Neimark – Sacker) and their continuation in two control parameters, as well as detection and location of all codimension 2 bifurcation points on the corresponding curves. For all bifurcations of codim 1 and 2, the critical normal form coefficients are computed, both numerically with finite directional differences and using symbolic derivatives of the original map. Using a parameter-dependent center manifold reduction, explicit asymptotics are derived for bifurcation curves of double and quadruple period cycles rooted at codim 2 points of cycles with arbitrary period. These asymptotics are implemented into the software and allow one to switch at codim 2 points to the continuation of the double and quadruple period bifurcations. We provide two examples illustrating the developed techniques: a generalized Hénon map and a juvenile/adult competition model from mathematical biology.
MSC:
65P30Bifurcation problems (numerical analysis)
37G05Normal forms
37M20Computational methods for bifurcation problems