zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Control of mechanical systems with Stribeck friction and backlash. (English) Zbl 1155.93365
Summary: The control of mechanical systems in the presence of nonlinear friction and backlash is treated in a hybrid system approach. To deal with friction induced nonlinearities, the Stribeck friction model is linearized and the resulting model of the controlled plant is a hybrid system, the dynamics of which is given by linear models in the different partitions of the state space. During controller design it is assumed that the size of the backlash gap is unknown and the load side position and velocity cannot be measured. For motion control an LQ controller is applied. A condition is formulated for the control law parameters to guarantee the asymptotic stability of the control system. The LQ control algorithm is also extended for trajectory tracking tasks. Simulation results are presented to show the applicability of the theoretical results.
MSC:
93C10Nonlinear control systems
93B18Linearizability of systems
70Q05Control of mechanical systems (general mechanics)
93D20Asymptotic stability of control systems
References:
[1]Armstrong-Hèlouvry, Brian: Stick slip and control in low-speed motion, IEEE transactions on automatic control 38, No. 10, 1483-1496 (1990)
[2]De Wit Carlos, Caundas; Ollson, H.; Strom, K. J. å; Lischinsky, P.: A new model for control of systems with friction, IEEE transactions on automatic control 40, No. 3, 419-425 (1995) · Zbl 0821.93007 · doi:10.1109/9.376053
[3]Swevers, Jan; Al-Bender, Farid; Ganseman, Chris G.; Prajogo, Tutuko: An integrated friction model structure with improved presliding behavior for accurate friction compensation, IEEE transactions on automatic control 45, No. 5, 675-685 (2000) · Zbl 0984.70008 · doi:10.1109/9.847103
[4]Lampaert, Vincent; Swevers, Jan; Al-Bender, Farid: Modification of the Leuven integrated friction model structure, IEEE transactions on automatic control 47, No. 4, 683-687 (2002)
[5]Dupont, Pierre; Armstrong, Brian; Altpeter, Friedhelm: Single state elastoplastic friction models, IEEE transactions on automatic control 47, No. 5, 787-792 (2002)
[6]Armstrong-Hèlouvry, Brian: Control of machines with friction, (1991) · Zbl 0782.93003
[7]Hensen, H. A.; Van De Molengraft, M. J. G.; Steinbuch, M.: Friction induced hunting limit cycles: A comparison between the lugre and switch friction model, Automatica 39, 2131-2137 (2003)
[8]Putra, D.; Nijmeijer, H.; Van Dewouw, N.: Analysis of undercompensation and overcompensation of friction in 1DOF mechanical systems, Automatica 43, 1387-1394 (2007) · Zbl 1130.74033 · doi:10.1016/j.automatica.2007.01.021
[9]Basilio Bona, Marina Indri, Friction compensation in robotics: An overview, in: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, Seville, Spain, 2005
[10]Garagic, Denis; Krishnaswamy, Srinivasah: Adaptive friction compensation for precision machine tool drive, Control engineering practice 12, 1451-1464 (2004)
[11]Panteley, E.; Ortega, R.; Gafvert, M.: An adaptive friction compensator for global tracking in a robotic manipulator, Systems and control letters 33, 307-313 (1998) · Zbl 0902.93048 · doi:10.1016/S0167-6911(97)00113-8
[12]Xie, Wen-Fang: Sliding-mode-observer-based adaptive control for servo actuator with friction, IEEE transactions on industrial electronics 54, No. 3, 1517-1528 (2007)
[13]Makkar, C.; Sawyer, W. G.; Hu, G.; Dixon, W. E.: Lyapunov-based tracking control in the presence of uncertain nonlinear parameterizable friction, IEEE transactions on automatic control 52, No. 10, 1988-1994 (2007)
[14]M. Feemster, P. Vedagrbha, D.M. Dawson, D. Haste, Adaptive control techniques for friction compensation, in: Proc. of the American Control Conference, Philadelphia, Pennsylvania,, 1998, pp. 1488–1492
[15]Nordin, Mattias; Gutman, Per-Olof: Controlling mechanical systems with backlash–A survey, Automatica 38, 1633-1649 (2002) · Zbl 1030.70013 · doi:10.1016/S0005-1098(02)00047-X
[16]Barreiro, Antonio; Banos, Alfonso: Input–output stability of systems with backlash, Automatica 42, 1017-1024 (2006) · Zbl 1135.93029 · doi:10.1016/j.automatica.2006.02.017
[17]S. Tarbouriech, C. Prieur, Stability analysis for sandwich systems with backlash: An LMI approach, in: Proc. of 5th IFAC Symposium on Robust Control Design, Toulouse, France, 2006
[18]Tao, Gang; Kokotovic, Petar: Adaptive control of systems with sensor and actuator nonlinearities, (1996) · Zbl 0953.93002
[19]Rostalski, Philipp; Besselmann, Thomas; Baric, Miroslav; Van Belzen, Femke; Morari, Manfred: Hybrid approach to modeling, control and state estimation of mechanical systems with backlash, International journal of control 80, No. 11, 1729-1740 (2007) · Zbl 1130.93357 · doi:10.1080/00207170701493985
[20]Lagerberg, Adam; Egardt, Bo: Backlash estimation with application to automotive powertrains, IEEE transactions on control systems technology 15, No. 3, 483-493 (2007)
[21]Tao, Gang; Ma, Xiaoli; Ling, Yi: Optimal and nonlinear decoupling control of systems with sandwiched backlash, Automatica 37, 165-176 (2001) · Zbl 0959.93500 · doi:10.1016/S0005-1098(00)00153-9
[22]Nariman, Sepehri; Sassani, F.; Lawrence, P. D.; Ghasempoor, A.: Simulation and experimental studies of gear backlash and stick-slip friction in hydraulic excavator swing motion, ASME journal of dynamic systems, measurements and control 118, 463-467 (1996) · Zbl 0875.73229 · doi:10.1115/1.2801168
[23]Menon, K.; Krishnamurthy, K.: Control of low velocity friction and gear backlash in a machine tool feed drive system, Mechatronics 9, 33-52 (1999)
[24]Suraneni, S.; Kar, I. N.; Murthy, O. V. Ramana; Bhatt, R. K. P.: Adaptive stick slip friction and backlash compensation using dynamic fuzzy logic system, Applied soft computing 6, 26-37 (2005)
[25]Márton, Lorinc; Lantos, Béla: Modeling, identification and compensation of stick-slip friction, IEEE trans. On industrial electronics 54, No. 1, 511-521 (2007)
[26]Márton, Lorinc: On analysis of limit cycles in positioning systems near striebeck velocities, Mechatronics 48, 46-52 (2008)
[27]Octavian Beldiman, Linda Bushnell, Stability, linearization and control of switched systems, in: Proc. of the American Control Conference, San Diego, California, 1999, pp. 2950–2954
[28]Rantzer, Anders; Johansson, Mikael: Piecewise linear quadratic optimal control, IEEE transactions on automatic control 45, No. 4, 629-637 (2000) · Zbl 0969.49016 · doi:10.1109/9.847100