zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization and anti-synchronization coexist in two-degree-of-freedom dissipative gyroscope with nonlinear inputs. (English) Zbl 1156.34331
Summary: This study demonstrates that synchronization and anti-synchronization can coexist in two-degree-of-freedom dissipative gyroscope system with input nonlinearity. Because of the nonlinear terms of the gyroscope system, the system exhibits complex motions containing regular and chaotic motions. Using the variable structure control technique, a novel control law is established which guarantees the hybrid projective synchronization including synchronization, anti-synchronization and projective synchronization even when the control input nonlinearity is present. By Lyapunov stability theory with control terms, two suitable sliding surfaces are proposed to ensure the stability of the controlled closed-loop system in sliding mode, and two variable structure controllers (VSC) are designed to guarantee the hitting of the sliding surfaces. Numerical simulations are presented to verify the proposed synchronization approach.
MSC:
34D20Stability of ODE
70K28Parametric resonances (nonlinear dynamics)
70E05Motion of the gyroscope