zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On parameter estimation for locally stationary long-memory processes. (English) Zbl 1156.62055
Summary: We consider parameter estimation for time-dependent locally stationary long-memory processes. The asymptotic distribution of an estimator based on the local infinite autoregressive representation is derived, and asymptotic formulas for the mean squared error of the estimator, and the asymptotically optimal bandwidth, are obtained. In spite of long memory, the optimal bandwidth turns out to be of the order n -1/5 and inversely proportional to the square of the second derivative of d. In this sense, local estimation of d is comparable to regression smoothing with iid residuals.
MSC:
62M10Time series, auto-correlation, regression, etc. (statistics)
62F10Point estimation
62E20Asymptotic distribution theory in statistics
62M09Non-Markovian processes: estimation
62F12Asymptotic properties of parametric estimators
References:
[1]Ben Hariz, S.; Wylie, J. J.; Zhang, Q.: Optimal rate of convergence for nonparametric change-point estimators for nonstationary sequences, Ann. statist. 35, No. 4, 1802-1826 (2007) · Zbl 1147.62043 · doi:10.1214/009053606000001596
[2]Beran, J.: Statistics for long-memory processes, (1994)
[3]Beran, J.: Maximum likelihood estimation of the differencing parameter for invertible short- and long-memory ARIMA models, J. roy. Statist. soc. Ser. B 57, No. 4, 672-695 (1995) · Zbl 0827.62088
[4]Beran, J.: Statistics in musicology, (2003)
[5]Beran, J.; Feng, Y.: SEMIFAR models — a semiparametric framework for modelling trends, long-range dependence and nonstationarity, Comput. statist. Data anal. 40, 393-419 (2002) · Zbl 0993.62079 · doi:10.1016/S0167-9473(02)00007-5
[6]Beran, J.; Feng, Y.: Iterative plug-in algorithms for SEMIFAR models — definition, convergence and asymptotic properties, J. comput. Graph. statist. 11, 690-713 (2002)
[7]Beran, J.; Terrin, N.: Estimation of the long-memory parameter, based on a multivariate central limit theorem, J. time ser. Anal. 15, 269-284 (1994) · Zbl 0794.62054 · doi:10.1111/j.1467-9892.1994.tb00192.x
[8]Beran, J.; Sherman, R.; Taqqu, M. S.; Willinger, W.: Long-range dependence in variable-bit-rate video traffic, Comm. — IEEE trans. Comm. 43, No. 234, 1566-1579 (1995)
[9]Beran, J.; Bhansali, R. J.; Ocker, D.: On unified model selection for stationary and nonstationary short- and long-memory autoregressive processes, Biometrika 85, No. 4, 921-934 (1998) · Zbl 1054.62581 · doi:10.1093/biomet/85.4.921
[10]Berkes, I.; Horváth, L.; Kokoszka, P.; Shao, Q.: On discriminating between long-range dependence and changes in mean, Ann. statist. 34, No. 3, 1140-1165 (2006) · Zbl 1112.62085 · doi:10.1214/009053606000000254
[11]Brockmann, M.: Locally adaptive bandwidth choice for kernel regression estimators, J. amer. Statist. assoc. 88, 1302-1309 (1993) · Zbl 0792.62028 · doi:10.2307/2291270
[12]Csörgö, S.; Mielniczuk, J.: Nonparametric regression under long-range dependent normal errors, Ann. statist. 23, 1000-1014 (1995) · Zbl 0852.62035 · doi:10.1214/aos/1176324633
[13]Dahlhaus, R.: Efficient parameter estimation for self-similar processes, Ann. statist. 17, 1749-1766 (1989) · Zbl 0703.62091 · doi:10.1214/aos/1176347393
[14]Dahlhaus, R.: On the Kullback – Leibler information divergence of locally stationary processes, Stochastic process. Appl. 62, 139-162 (1996) · Zbl 0849.60032 · doi:10.1016/0304-4149(95)00090-9
[15]Dahlhaus, R.: Fitting time series models to nonstationary processes, Ann. statist. 25, 1-37 (1997) · Zbl 0871.62080 · doi:10.1214/aos/1034276620
[16]Dahlhaus, R.; Giraitis, L.: On the optimal segment length for estimates for locally stationary time series, J. time ser. Anal. 19, 629-636 (1998) · Zbl 0921.62107 · doi:10.1111/1467-9892.00114
[17]Diebold, F. X.; Inoue, A.: Long memory and regime switching, J. econometrics 105, 131-159 (2001) · Zbl 1040.62109 · doi:10.1016/S0304-4076(01)00073-2
[18]Embrechts, P.; Klüppelberg, C.; Mikosch, T.: Modelling extremal events, (1997)
[19]Fahrmeir, L.; Kaufmann, H.: Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models, Ann. statist. 13, 342-368 (1985) · Zbl 0594.62058 · doi:10.1214/aos/1176346597
[20]Falconer, K.; Fernandez, C.: Inference on fractal processes using multiresolution approximation, Biometrika 94, No. 2, 313-334 (2007) · Zbl 1133.62068 · doi:10.1093/biomet/asm025
[21]Fox, R.; Taqqu, M. S.: Large sample properties of parameter estimates for strongly dependent stationary Gaussian time series, Ann. statist. 14, 517-532 (1986) · Zbl 0606.62096 · doi:10.1214/aos/1176349936
[22]Gasser, T.; Kneip, A.; Köhler, W.: A flexible and fast method for automatic smoothing, J. amer. Statist. assoc. 86, 643-652 (1991) · Zbl 0733.62047 · doi:10.2307/2290393
[23]Giraitis, L., Leipus, R., 1990. A function CLT for nonparametric estimates of spectra and change-point problem for spectral function. Lietuvos Matematikos Rinkinys 30, 674 – 497. · Zbl 0761.62123 · doi:10.1007/BF00970826
[24]Giraitis, L.; Leipus, R.: Testing and estimating in the change point problem of the spectral function. A function CLT for nonparametric estimates of spectra and change-point problem for spectral function, Lietuvos matematikos rinkinys 32, 20-38 (1992) · Zbl 0794.62066 · doi:10.1007/BF00970967
[25]Giraitis, L.; Surgailis, D.: A central limit theorem for quadratic forms in strongly dependent linear variables and its application to the asymptotic normality of whittle’s estimate, Probab. theory related fields 86, 87-104 (1990) · Zbl 0717.62015 · doi:10.1007/BF01207515
[26]Granger, C. W.; Ding, Z.: Varieties of long memory models, J. econometrics 73, No. 1, 61-77 (1996) · Zbl 0854.62100 · doi:10.1016/0304-4076(95)01733-X
[27]Granger, C. W.; Hyung, N.: Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns, J. empirical finance 11, No. 3, 399-421 (2004)
[28]Granger, C. W. J.; Joyeux, R.: An introduction to long-range time series models and fractional differencing, J. time ser. Anal. 1, 15-30 (1980) · Zbl 0503.62079 · doi:10.1111/j.1467-9892.1980.tb00297.x
[29]Hall, P.: On bootstrap confidence intervals in nonparametric regression, Ann. statist. 20, No. 2, 695-711 (1992) · Zbl 0765.62049 · doi:10.1214/aos/1176348652
[30]Hall, P.; Hart, J.: Nonparametric regression with long-range dependence, Stochastic process. Appl. 36, 339-351 (1990) · Zbl 0713.62048 · doi:10.1016/0304-4149(90)90100-7
[31]Hall, P.; Heyde, C. C.: Martingale limit theory and its application, (1980) · Zbl 0462.60045
[32]Hallin, M.: Mixed autoregressive-moving average multivariate processes with time-dependent coefficients, J. multivariate anal. 8, 567-572 (1978) · Zbl 0394.62067 · doi:10.1016/0047-259X(78)90034-9
[33]Härdle, W.; Marron, J. S.: Bootstrap simultaneous error bars for nonparametric regression, Ann. statist. 19, 778-796 (1991) · Zbl 0725.62037 · doi:10.1214/aos/1176348120
[34]Herrmann, E.; Gasser, T.; Kneip, A.: Choice of bandwidth for kernel regression when residuals are correlated, Biometrika 79, 783-795 (1992) · Zbl 0765.62044 · doi:10.1093/biomet/79.4.783
[35]Horváth, L.; Kokoszka, P.: The effect of long-range dependence on changepoint estimators, J. statist. Plann. inference 64, No. 1, 57-81 (1997) · Zbl 0946.62078 · doi:10.1016/S0378-3758(96)00208-X
[36]Horváth, L., Shao, Q.-M., 1999. Limit theorems for quadratic forms with applications to Whittle’s estimate. Ann. Appl. Probab. 9 (1), 146 – 187. · Zbl 0940.60037 · doi:10.1214/aoap/1029962600
[37]Hosking, J. R. M.: Fractional differencing, Biometrika 68, 165-176 (1981) · Zbl 0464.62088 · doi:10.1093/biomet/68.1.165
[38]Hüsler, J.; Piterbarg, V.; Seleznjev, O.: On convergence of the uniform norms for Gaussian processes and linear approximation problems, Ann. appl. Probab. 13, No. 4, 1615-1653 (2003) · Zbl 1038.60040 · doi:10.1214/aoap/1069786514
[39]Jensen, M.J., Whitcher, B., 2000. Time-varying long memory in volatility: detection and estimation with wavelets. Technical Report, EURANDOM.
[40]Kokoszka, P.; Leipus, R.: Detection and estimation of changes in regime, Long-range dependence, 325-337 (2003) · Zbl 1031.62075
[41]Kuan, C. M.; Hsu, C. C.: Change-point estimation of fractionally integrated processes, J. time ser. Anal. 19, No. 6, 693-708 (1998) · Zbl 0921.62112 · doi:10.1111/1467-9892.00117
[42]Lahiri, S. N.: Resampling methods for dependent data, (2003)
[43]Lavielle, M.; Ludena, C.: The multiple change-points problem for the spectral distribution, Bernoulli 6, No. 5, 845-869 (2000) · Zbl 0998.62077 · doi:10.2307/3318759
[44]Lowen, S. B.; Teich, M. C.: Fractal-based point processes, (2005)
[45]Mandelbrot, B. B.: Fractals. form, chance and dimension, (1977)
[46]Moulines, E.; Priouret, P.; Roueff, F.: On recursive estimation for time varying autoregressive processes, Ann. statist. 33, No. 6, 2610-2654 (2005) · Zbl 1084.62089 · doi:10.1214/009053605000000624
[47]Priestley, M. B.: Spectral analysis and time series, (1981)
[48]Ray, B. K.; Tsay, R. S.: Bandwidth selection for kernel regression with long-range dependence, Biometrika 84, 791-802 (1997) · Zbl 1090.62536 · doi:10.1093/biomet/84.4.791
[49]Ray, B. K.; Tsay, R. S.: Bayesian methods for change-point detection in long-range dependent processes, J. time ser. Anal. 23, No. 6, 687-705 (2002) · Zbl 1114.62092 · doi:10.1111/1467-9892.00286
[50]Sibbertsen, P.: Long memory versus structural breaks: an overview, Statist. papers 45, 465-515 (2004) · Zbl 1055.62098 · doi:10.1007/BF02760564
[51]Stoev, S.; Taqqu, M. S.: Asymptotic self-similarity and wavelet estimation for long-range dependent fractional autoregressive integrated moving average time series with stable innovations, J. time ser. Anal. 26, No. 2, 211-249 (2005) · Zbl 1091.62087 · doi:10.1111/j.1467-9892.2005.00399.x
[52]Stoev, S.; Pipiras, V.; Taqqu, M. S.: Estimation of the self-similarity parameter in linear fractional stable motion, Signal process. 82, No. 12, 1873-1901 (2002) · Zbl 1098.94589 · doi:10.1016/S0165-1684(02)00317-1
[53]Rao, T. Subba: The Fitting of non-stationary time series models with time-dependent parameters, J. roy. Statist. soc. Ser. B 32, 312-322 (1970) · Zbl 0225.62109
[54]Tousson, O.: Mémoire sur l’histoire du nil, Mémoires de l’institut d’egypte 18, 366-404 (1925)
[55]Tribouley, K.: Adaptive simultaneous confidence intervals in non-parametric estimation, Statist. probab. Lett. 69, No. 1, 37-51 (2004) · Zbl 1116.62346 · doi:10.1016/j.spl.2004.04.008
[56]Van Bellegem, S.; Dahlhaus, R.: Semiparametric estimation by model selection for locally stationary processes, J. roy. Statist. soc. B 68, 721-764 (2006) · Zbl 1110.62119 · doi:10.1111/j.1467-9868.2006.00564.x
[57]Vesilo, R.A., Chan, A., 1996. Detecting change points in long range dependency traffic. In: Proceedings of the Australian Telecommunication Networks and Applications Conference, Melbourne, 3 – 6 December, pp. 567 – 572.
[58]Whitcher, B.; Jensen, M. J.: Wavelet estimation of a local long memory parameter, Exploration geophys. 31, 94-103 (2000)
[59]Whitcher, B.; Byers, S. D.; Guttorp, P.; Percival, D. B.: Testing for homogeneity of variance in time series: long memory, wavelets and the nile river, Water resources res. 38, No. 5, 1000-1029 (2002)
[60]Wright, J. H.: Testing for a structural break at unknown date with long-memory disturbances, J. time ser. Anal. 19, 369-376 (1998) · Zbl 0906.62095 · doi:10.1111/1467-9892.00097
[61]Yajima, Y.: On estimation of long-memory time series models, Austral. J. Statist. 27, 303-320 (1985) · Zbl 0584.62142 · doi:10.1111/j.1467-842X.1985.tb00576.x