zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The fractional oscillator process with two indices. (English) Zbl 1156.82010
Summary: We introduce a new fractional oscillator process which can be obtained as a solution of a stochastic differential equation with two fractional orders. Basic properties such as fractal dimension and short-range dependence of the process are studied by considering the asymptotic properties of its covariance function. By considering the fractional oscillator process as the velocity of a diffusion process, we derive the corresponding diffusion constant, fluctuation-dissipation relation and mean-square displacement. The fractional oscillator process can also be regarded as a one-dimensional fractional Euclidean Klein-Gordon field, which can be obtained by applying the Parisi-Wu stochastic quantization method to a nonlocal Euclidean action. The Casimir energy associated with the fractional field at positive temperature is calculated by using the zeta function regularization technique.
MSC:
82C31Stochastic methods in time-dependent statistical mechanics