zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An improved ant colony optimization for vehicle routing problem. (English) Zbl 1156.90434
Summary: The vehicle routing problem (VRP), a well-known combinatorial optimization problem, holds a central place in logistics management. This paper proposes an improved ant colony optimization (IACO), which possesses a new strategy to update the increased pheromone, called ant-weight strategy, and a mutation operation, to solve VRP. The computational results for fourteen benchmark problems are reported and compared to those of other metaheuristic approaches.
MSC:
90C27Combinatorial optimization
90C59Approximation methods and heuristics
References:
[1]Baker, B. M.; Ayechew, M. A.: A genetic algorithm for the vehicle routing problem, Computers & operations research 30, 787-800 (2003) · Zbl 1026.90013 · doi:10.1016/S0305-0548(02)00051-5
[2]Beasley, J. E.: OR-library: distributing test problems by electronic mail, Journal of the operational research society 41, 1069-1072 (1990)
[3]Bell, J. E.; Mcmullen, P. R.: Ant colony optimization techniques for the vehicle routing problem, Advanced engineering informatics 1, No. 8, 41-48 (2004)
[4]Brandao, J.; Mercer, A.: A tabu search algorithm for the multi-trip vehicle routing and scheduling problem, European journal of operational research 100, 180-191 (1997) · Zbl 0947.90578 · doi:10.1016/S0377-2217(97)00010-6
[5]Bullnheimer, B., Hartl, R.F., Strauss, C., 1997. Applying the ant system to the vehicle routing problem. In: Second Metaheuristics International Conference, MIC’97, Sophia-Antipolis, France. · Zbl 0970.90019
[6]Bullnheimer, B.; Hartl, R. F.; Strauss, C.: An improved ant system algorithm for the vehicle routing problem, Annals of operations research 89, 319-328 (1999) · Zbl 0937.90125 · doi:10.1023/A:1018940026670
[7]Chen, C. H.; Ting, C. J.: An improved ant colony system algorithm for the vehicle routing problem, Journal of the chinese institute of industrial engineers 23, No. 2, 115-126 (2006)
[8]Chiang, W. C.; Russell, R.: Simulated annealing meta-heuristics for the vehicle routing problem with time windows, Annals of operations research 93, 3-27 (1996) · Zbl 0849.90054 · doi:10.1007/BF02601637
[9]Colorni, A.; Dorigo, M.; Maniezzo, V.; Trubian, M.: Ant system for job-shop scheduling, Jorbel – belgian journal of operations research statistics and computer science 34, No. 1, 39-53 (1994) · Zbl 0814.90047
[10]Doerner, K. F.; Gronalt, M.; Hartl, R. F.; Reimann, M.; Strauss, C.; Stummer, M.: Savings ants for the vehicle routing problem, Applications of evolutionary computing (2002)
[11]Doerner, K.F., Hartl, R.F., Kiechle, G., Lucka, M., Reimann, M., 2004. Parallel ant systems for the capacitated vehicle routing problem. In: Evolutionary Computation in Combinatorial Optimization: 4th European Conference, EvoCOP 2004, LNCS 3004, pp. 72 – 83. · Zbl 1177.90338 · doi:10.1007/b96499
[12]Dongarra, J., 2001. Performance of various computer using standard linear equations software. Report CS-89-85, University of Tennessee.
[13]Dorigo, M.; Maniezzo, V.; Colorni, A.: Ant system: optimization by a colony of cooperating agents, IEEE transactions on systems, mans, and cybernetics 1, No. 26, 29-41 (1996)
[14]Gambardella, L., Taillard, E., Dorigo, M., 1997. Ant Colonies for the QAP, Technical Report 97-4, IDSIA, Lugano, Switzerland.
[15]Gendreau, M.; Laporte, G.; Musaraganyi, C.; Taillard, E. D.: A tabu search heuristic for the heterogeneous fleet vehicle routing problem, Computers & operations research 26, 1153-1173 (1999) · Zbl 0967.90019 · doi:10.1016/S0305-0548(98)00100-2
[16]Koulamas, C.; Antony, S.; Jaen, R.: A survey of simulated annealing applications to operations research problems, Omega 22, No. 1, 41-56 (1994)
[17]Mazzeo, S.; Loiseau, I.: An ant colony algorithm for the capacitated vehicle routing, Electronic notes in discrete mathematics 18, 181-186 (2004) · Zbl 1075.90568 · doi:http://www.sciencedirect.com/science/journal/15710653
[18]Osman, I. H.: Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem, Annals of operations research 41, 421-451 (1993) · Zbl 0775.90153 · doi:10.1007/BF02023004
[19]Osman, M. S.; Abo-Sinna, M. A.; Mousa, A. A.: An effective genetic algorithm approach to multiobjective routing problems (morps), Applied mathematics and computation 163, 769-781 (2005) · Zbl 1060.65606 · doi:10.1016/j.amc.2003.10.058
[20]Peng, W., Tong, R.F., Tang, M., Dong, J.X., 2005. Ant colony search algorithms for optimal packing problem. ICNC 2005, LNCS 3611, pp. 1229 – 1238.
[21]Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem, Computers & operations research 31, 1985-2002 (2004) · Zbl 1100.90504 · doi:10.1016/S0305-0548(03)00158-8
[22]Reimann, M.; Stummer, M.; Doerner, K.: A savings based ant system for the vehicle routing problem, GECCO 2002: Proceedings of the genetic and evolutionary computation conference (2002)
[23]Renaud, J.; Laporte, G.; Boctor, F. F.: A tabu search heuristic for the multi-depot vehicle routing problem, Computers & operations research 23, No. 3, 229-235 (1996) · Zbl 0855.90055 · doi:10.1016/0305-0548(95)O0026-P
[24]Rochat, Y.; Taillard, R. E.: Probabilistic diversification and intensification in local search for vehicle routing, Journal of heuristics 1, 147-167 (1995) · Zbl 0857.90032 · doi:10.1007/BF02430370
[25]Schoonderwoerd, R.; Holland, O.; Bruten, J.; Rothkrantz, L.: Ant-based load balancing in telecommunications networks, Adaptive behavior 5, No. 2, 169-207 (1997)
[26]Semet, F.; Taillard, E. D.: Solving real-life vehicle routing problems efficiently using taboo search, Annals of operations research 41, 469-488 (1993) · Zbl 0775.90156 · doi:10.1007/BF02023006
[27]Taillard, R. E.: Parallel iterative search methods for vehicle routing problems, Networks 23, 661-673 (1993) · Zbl 0804.90045 · doi:10.1002/net.3230230804
[28]Tavakkoli-Moghaddam, R.; Safaei, N.; Gholipour, Y.: A hybrid simulated annealing for capacitated vehicle routing problems with the independent route length, Applied mathematics and computation 176, 445-454 (2006) · Zbl 1149.90312 · doi:10.1016/j.amc.2005.09.040
[29]Thangiah, S.R., Osman, I.H., Sun, T., 1994. Hybrid genetic algorithm, simulated annealing and tabu search methods for vehicle routing problems with time windows. Technical Report 27, Computer Science Department, Slippery Rock University.
[30]Yang, Z. Z.; Yu, B.; Cheng, C. T.: A parallel ant colony algorithm for bus network optimization, Computer-aided civil and infrastructure engineering 22, 44-55 (2007)
[31]Yu, B., Yang, Z.Z., 2007. A dynamic holding strategy in public transit systems with real-time information. Applied Intelligence, (accepted for publication), doi:10.1007/s10489-007-0112-9.
[32]Yu, B.; Yang, Z. Z.; Cheng, C. T.: Optimizing the distribution of shopping centers with parallel genetic algorithm, Engineering applications of artificial intelligence 20, No. 2, 215-223 (2007)